首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proteolytic enzyme produced by Bacillus subtilis is characterized as typical metalloprotease with a molecular weight of 27.9 kD; the enzyme shows its highest activity at pH 7.0-9.0, possesses substrate specificity with respect to different proteins, its temperature optimum is 52 degrees C and its specific activity exceeds that of all known commercial analogues. At 37 degrees C the enzyme is half inactivated in 72 hours.  相似文献   

2.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

3.
Amino acid sequence of neutral metalloprotease from Bac. brevis has been compared with that of Bac. amyloloquefaciens, Bac. cereus, Bac. subtilis, Bac. stearothermophilis, Bac. thermoproteolyticus (thermolysine). A sequence region from N-40 to N-1 with a significant degree of homology allowed to predict the processing site of the propart of Bac. brevis enzyme. The sequence comparison allows to put Bac. brevis enzyme within the evolutionary branch of enzymes, which includes thermolysin and proteases of Bac. cereus and Bac. stearothermophilus. Using automated Edman degradation the N-terminal sequence of Bac. brevis protease has been determined. It does not differ from the sequence predicted from the nucleotide sequence of the gene. It was shown that, when Bac. brevis gene coding for thermostable protease is expressed on a plasmid vector in Bac. subtilis cells at 37 degrees C, enzyme forms possessing low activity are secreted. The enzyme may be significantly activated without an additional cleavage or processing and the activation includes numerous conformation transition states of the protein molecule.  相似文献   

4.
The neutral protease of Bacillus polymyxa had a broad pH optimum (6.0 to 7.2) for activity at 37 C. The enzyme was most stable at pH 5.6 to 5.8. The protease had an optimum temperature of 37 C and was quite thermostable up to 35 C, but at higher temperatures the stability decreased rapidly. The substrate specificity of the protease was similar to that of the neutral proteases of other members of the genus Bacillus. The enzyme was shown to be a zinc metalloprotease. However, manganous ions had a greater activating and stabilizing influence on the activity of this enzyme than zinc. Replacement of zinc in the native enzyme by manganese resulted in a 50% increase in activity. In addition, the prepared manganese metalloprotease had higher temperature and more alkaline pH optima than the native enzyme.  相似文献   

5.
G A Rufo  Jr  B J Sullivan  A Sloma    J Pero 《Journal of bacteriology》1990,172(2):1019-1023
We have isolated and characterized two minor extracellular proteases from culture supernatants of a strain of Bacillus subtilis containing deletion mutations of the genes for the extracellular proteases subtilisin (apr) and neutral protease (npr) and a minor extracellular protease (epr) as well as intracellular serine protease-I (isp-1). Characterization studies have revealed that one of these enzymes is the previously described protease bacillopeptidase F. The second enzyme, the subject of this report, is a novel metalloprotease, which we designate Mpr. Mpr is a unique metalloprotease that has been purified to apparent homogeneity by using both conventional and high-performance liquid chromatography procedures. Mpr has a molecular mass of approximately 28 kilodaltons on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a basic isoelectric point of 8.7. The enzyme showed maximal activity against azocoll at pH 7.5 and 50 degrees C. Mpr was inhibited by dithiothreitol and a combination of beta-mercaptoethanol and EDTA. Activity was moderately inhibited by beta-mercaptoethanol and EDTA alone as well as by cysteine and citrate and only marginally by phosphoramidon 1,10-phenanthroline and N-[N-(L-3-trans-carboxyoxiran-2-carbonyl)-L-leucyl]-agmatine. Mpr was not inhibited by phenylmethylsulfonyl fluoride. In addition, Mpr showed esterolytic but not collagenolytic activities. Our studies suggest that Mpr is a secreted metalloprotease containing cysteine residues that are required for maximal activity.  相似文献   

6.
To go further into the characterization of the proteolysis exocellular system of the salmonid pathogen Flavobacterium psychrophilum, the purification and characterization of a novel protease designated Fpp2 (F. psychrophilum protease 2) was undertaken. A protease (Fpp2) hydrolyzing azocasein was purified. The Fpp2 can be defined as a metalloprotease, it had an estimated molecular mass of 62 kDa with calcium playing an important role in the thermostability of the enzyme. Proteolytic activity was optimal at pH 6.0-7.0 and 24 degrees C and activation energy for the hydrolysis of azocasein was determined to be 5.4 kcal mol(-1), being inactive at temperatures above 42 degrees C. All these results are characteristic of 'cold adapted enzymes'. Fpp2 proved to be a broad range hydrolytic enzyme because in optimal conditions it was able to hydrolyze matrix and muscular proteins. It can be concluded that the Fpp1, a previously characterized 55 kDa metalloprotease, and the Fpp2 protease were produced under different physiological conditions and were immunologically as well as biochemically different.  相似文献   

7.
An extracellular alkaline metalloprotease (MprI) from Alteromonas sp. strain O-7 was purified and characterized. The molecular mass of the purified enzyme was estimated to be 56 kDa by SDS-PAGE. The optimum pH and temperature were pH 10.0 and 60 degrees C, respectively. The gene (mprI) encoding MprI was cloned and its nucleotide sequence was analyzed. The deduced amino acid sequence of MprI showed significant similarity to metalloproteases classified into the thermolysin family. Furthermore, sequence analysis showed that another metalloprotease (MprII)-encoding gene was located downstream from mprI. The deduced amino acid sequence of MprII showed high similarity to metalloproteases of the aminopeptidase family. Similar repeated C-terminal extensions were found in both MprI and MprII.  相似文献   

8.
A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-60 degrees C and pH 6-12, with maximum activity at 50 degrees C and pH 9.0. Whereas the metal ions Na+, Ca2+, and K+ enhanced the activity of the enzyme, others such as Hg2+, Cu2+, Fe2+, Co2+, and Zn2+ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by Cu2+ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.  相似文献   

9.
Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.  相似文献   

10.
C Croux  V Paquet  G Goma    P Soucaille 《Applied microbiology》1990,56(12):3634-3642
Acidolysin an extracellular protease produced by Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography with a recovery of 91%. The enzyme was a monomeric protein with a molecular weight of 44,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an acidic isoelectric point of 3.3. Acidolysin was very sensitive to metal-chelating agents and phosphoramidon and was unaffected by sulfhydryl reagents. It was shown to be a calcium- and zinc-containing protease. It exhibited optimal activity against Azocoll at pH 5 and 45 degrees C. It was stable at low pH and heat labile above 50 degrees C. It exhibited specificity toward peptide bonds formed by the amino group of hydrophobic amino acids (isoleucine, leucine, and phenylalanine) and its NH2-terminal amino acid sequence showed a high degree of similarity with that of Bacillus subtilis neutral metalloprotease A. Acidolysin is the first phosphoramidon-sensitive, acidic zinc metalloprotease reported.  相似文献   

11.
T Kuriki  S Okada    T Imanaka 《Journal of bacteriology》1988,170(4):1554-1559
A new type of pullulanase which mainly produced panose from pullulan was found in Bacillus stearothermophilus and purified. The enzyme can hydrolyze pullulan efficiently and only hydrolyzes a small amount of starch. When pullulan was used as a substrate, the main product was panose and small amounts of glucose and maltose were simultaneously produced. By using pTB522 as a vector plasmid, the enzyme gene was cloned and expressed in Bacillus subtilis. Since the enzyme from the recombinant plasmid carrier could convert pullulan into not only panose but also glucose and maltose, we concluded that these reactions were due to the single enzyme. The new pullulanase, with a molecular weight of 62,000, was fairly thermostable. The optimum temperature was 60 to 65 degrees C, and about 90% of the enzyme activity was retained even after treatment at 60 degrees C for 60 min. The optimum pH for the enzyme was 6.0.  相似文献   

12.
A novel extracellular serine protease designated Pernisine was purified to homogeneity and characterized from the archaeon Aeropyrum pernix K1. The molecular mass, estimated by SDS-PAGE analysis and by gel filtration chromatography, was about 34 kDa suggesting that the enzyme is monomeric. Pernisine was active in a broad range of pH (5.0-12.0) and temperature (60-120 degrees C) with maximal activity at 90 degrees C and between pH 8.0 and 9.0. In the presence of 1 mM CaCl(2) the activity, as a function of the temperature, reached a maximum at 90 degrees C but at 120 degrees C the enzyme retained almost 80% of its maximal activity. Activity inhibition studies suggest that the enzyme is a serine metalloprotease and biochemical data indicate that Pernisine is a subtilisin-like enzyme. The protease gene, identified from the sequenced genome of A. pernix, was amplified from total genomic DNA by PCR technique to construct the expression plasmid pGEX-Pernisine. The Pernisine, lacking the leader sequence, was expressed in Escherichia coli BL21 strain as a fusion protein with glutathione- S-transferase. The biochemical properties of the recombinant enzyme were found to be similar to those of the native enzyme.  相似文献   

13.
Bacillus stearothermophilus ATCC 12016 was unable to grow at temperatures below 40 degrees C. On incubating the bacteria at the temperatures, ATP in cells disappeared, ADP was accumulated and ATPase (EC 3.6.1.3) was inactivated. When the purified ATPase was incubated at the temperatures for 1 h with 0.17 mM ADP in the presence of MgCl2, the enzyme was completely inactivated. The inactivated enzyme was reactivated on dilution or dialysis or on warming at 65 degrees C. During the incubation of the enzyme sample, the absorbance spectrum of the enzyme changed. On further incubating the sample over 1.5 h, the second step of spectral change occurred together with the change of the circular dichrosim and the dissociation into a lower molecular weight species of the protein. When the enzyme was treated with ADP-MgCl2 at 65 degrees C, the inactivation and conformational change of the enzyme was not observed.  相似文献   

14.
A fibrinolytic metalloprotease gene from Bacillus subtilis has been cloned in Escheridria coliXL1-Blue and the bacterial expressed enzyme was purified. The nucleotide sequence of the cloned fibrinolytic enzyme gene revealed a single open reading frame of 1023 bp coding for 341 amino acids (M r 37708.21 Da). N-terminal amino acid sequencing of the fibrinolytic enzyme excreted from E. coli host cells revealed that the mature fibrinolytic enzyme consists of 288 amino acids (M r 31391.1 Da). The deduced amino acid sequence showed significant homology with Erwina carotovora neutral metalloprotease and Serratia marcescens minor metalloprotease by 65 and 58% amino acid sequence identity, respectively. The protein showed significant alignments with the conserved domain of catalytic activity and the -helix domain in Bacillus anthracisthermolysis metalloprotease. The biochemical properties of the purified enzyme suggested that the enzyme is a fibrinolytic metalloprotease, which has optimal activity at pH 7.0 and 50 °C.  相似文献   

15.
A lysine aminopeptidase was purified from the yeast Kluyveromyces marxianus. This enzyme was purified 100-fold from a soluble extract obtained at 100,000g. The purification procedure consisted in fractionated precipitation with ammonium sulfate and five chromatography steps. The native enzyme had a molecular mass of 46 kDa assessed through gel filtration. This aminopeptidase depicted an optimal pH of 7.0 and was stable at a pH range of 4-8, its optimal temperature was 45 degrees C and the enzyme became unstable at temperatures above 55 degrees C. The isoelectric point of the purified enzyme was 4.4. Michaelis constant and Vmax for L-lysine-p-nitroanilide were 0.33 mM and 2.2 mM min(-1) per milligram of protein, respectively. The enzyme was strongly inhibited by bestatin, o-phenanthroline and, to a lesser extent, by EDTA, suggesting that this enzyme is a metalloprotease. Our results suggest that the lysine aminopeptidase from Kluyveromyces marxianus might be of biotechnological relevance.  相似文献   

16.
By cloning the beta-galactosidase gene of Bacillus stearothermophilus IAM11001 (ATCC 8005) into Bacillus subtilis, enzyme production was enhanced 50 times. beta-Galactosidase could be purified to 80% homogeneity by incubating the cell extract of B. subtilis at 70 degrees C for 15 min, followed by centrifugation to remove the denatured proteins. Because of its heat stability and ease of production, beta-galactosidase is suitable for application in industrial processes.  相似文献   

17.
beta-Galactosidase from Bacillus stearothermophilus.   总被引:6,自引:0,他引:6  
Several strains of thermophilic aerobic spore-forming bacilli synthesize beta-galactosidase (EC 3.2.1.23) constitutively. The constitutivity is apparently not the result of a temperature-sensitive repressor. The beta-galactosidase from one strain, investigated in cell-free extracts, has a pH optimum between 6.0 and 6.4 and a very sharp pH dependence on the acid side of its optimum. The optimum temperature for this enzyme is 65 degrees C and the Arrhenius activation energy is about 24 kcal/mol below 47 degrees C and 16 kcal/mol above that temperature. At 55 degrees C the Km is 0.11 M for lactose and 9.8 X 10(-3) M for 9-nitrophenyl-beta-D-galactopyranoside. The enzyme is strongly product-inhibited by galactose (Ki equals 2.5 X 10(-3) M). It is relatively stable at 50 degrees C, losing only half of its activity after 20 days at this temperature. At 60 degrees C more than 60% of the activity is lost in 10 min. However, the enzyme is protected somewhat against thermal inactivation by protein, and in the presence of 4 mg/ml of bovine serum albumin the enzyme is only 18% inactivated in 10 min at 60 degrees C. Its molecular weight, estimated by disc gel electrophoresis, is 215 000.  相似文献   

18.
A novel bacterial protease specifically hydrolyzing actin with the formation of a stable fragment with Mr of 36 kDa was obtained. This protease was shown to be synthesized at the stationary phase of bacterial culture growth. The actin hydrolysis by bacterial protease was inhibited by o-phenanthroline, EDTA and p-chloromercuribenzoate but not by N-ethyl-maleimide, phenylmethylsulfonylfluoride, Leu-peptin, pepstatin and other serine proteinase inhibitors. The protease was stable within the pH range of 4.5-8.5 and had an activity optimum at pH 7.0-8.0. The protease activity was maintained for 40 min at 45 degrees C and for 30 min at 50 degrees C; at 65 degrees C the enzyme was fully inactivated by 5 min heating. The protease preparations causing quantitative conversion of actin into a 36 kDa fragment did not hydrolyze casein, albumin, ovalbumin, lysozyme, DNAase I, RNAase, myosin, alpha-actinin, tropomyosin and troponin. It was assumed that the protease under consideration is a neutral metalloprotease specifically hydrolyzing actin.  相似文献   

19.
A psychrophilic alanine racemase gene from Bacillus psychrosaccharolyticus was cloned and expressed in Escherichia coli SOLR with a plasmid pYOK3. The gene starting with the unusual initiation codon GTG showed higher preference for codons ending in A or T. The enzyme purified to homogeneity showed the high catalytic activity even at 0 degrees C and was extremely labile over 35 degrees C. The enzyme was found to have a markedly large Km value (5.0 microM) for the pyridoxal 5'-phosphate (PLP) cofactor in comparison with other reported alanine racemases, and was stabilized up to 50 degrees C in the presence of excess amounts of PLP. The low affinity of the enzyme for PLP may be related to the thermolability, and may be related to the high catalytic activity, initiated by the transaldimination reaction, at low temperature. The enzyme has a distinguishing hydrophilic region around the residue no. 150 in the deduced amino acid sequence (383 residues), whereas the corresponding regions of other Bacillus alanine racemases are hydrophobic. The position of the region in the three dimensional structure of C atoms of the enzyme was predicted to be in a surface loop surrounding the active site. The region may interact with solvent and reduce the compactness of the active site.  相似文献   

20.
A fibrinolytic metalloprotease has been purified from the fruiting bodies of the edible honey mushroom (Armillariella mellea). The enzyme has a molecular weight of 18538.1508, as measured by MALDI-TOF mass spectrometry and includes Zn2+ ion as found by ICP/MS. The N-terminal amino acid sequence, XXYNGXTXSRQTTLV, do not match any known protein or open reading frame. It hydrolyzes fibrinogen as well as fibrin, but does not show any proteolytic activity for other blood proteins such as thrombin, human albumin, bovine albumin, human IgG, hemoglobin, or urokinase. This protease hydrolyzes both A alpha and B beta subunits of human fibrinogen with equal efficiency. The enzyme activity was strongly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzyme is a metalloprotease. No inhibition was found with PMSF, E-64, pepstatin, and 2-mercaptoethanol. The activity of the purified enzyme was slightly increased by Mg2+, Zn2+, and Co2+, but the enzyme was totally inhibited by Hg2+. It has broad substrate specificity for synthetic peptides, and a pH optimum at 7, suggested that the purified enzyme was a neutral protease. It was thermally stable up to 60 degrees C and the maximum fibrinolytic activity was at 55 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号