首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Lactococcus lactis, a homofermentative lactic acid bacterium, has been studied extensively over several decades to obtain sometimes conflicting concepts relating to the growth behaviour. In this review some of the data will be examined with respect to pyruvate metabolism. It will be demonstrated that the metabolic transformation of pyruvate can be predicted if the growth-limiting constraints are adequately established. In general lactate remains the major product under conditions in which sugar metabolism via a homolactic fermentation can satisfy the energy requirements necessary to assimilate anabolic substrates from the medium. In contrast, alternative pathways are involved when this energy supply becomes limiting or when the normal pathways can no longer maintain balanced carbon flux. Pyruvate occupies an important position within the metabolic network of L. lactis and the control of pyruvate distribution within the various pathways is subject to co-ordinated regulation by both gene expression mechanisms and allosteric modulation of enzyme activity.  相似文献   

5.
Xylose metabolism, a variable phenotype in strains of Lactococcus lactis, was studied and evidence was obtained for the accumulation of mutations that inactivate the xyl operon. The xylose metabolism operon (xylRAB) was sequenced from three strains of lactococci. Fragments of 4.2, 4.2, and 5.4 kb that included the xyl locus were sequenced from L. lactis subsp. lactis B-4449 (formerly Lactobacillus xylosus), L. lactis subsp. lactis IO-1, and L. lactis subsp. lactis 210, respectively. The two environmental isolates, L. lactis B-4449 and L. lactis IO-1, produce active xylose isomerases and xylulokinases and can metabolize xylose. L. lactis 210, a dairy starter culture strain, has neither xylose isomerase nor xylulokinase activity and is Xyl(-). Xylose isomerase and xylulokinase activities are induced by xylose and repressed by glucose in the two Xyl(+) strains. Sequence comparisons revealed a number of point mutations in the xylA, xylB, and xylR genes in L. lactis 210, IO-1, and B-4449. None of these mutations, with the exception of a premature stop codon in xylB, are obviously lethal, since they lie outside of regions recognized as critical for activity. Nevertheless, either cumulatively or because of indirect affects on the structures of catalytic sites, these mutations render some strains of L. lactis unable to metabolize xylose.  相似文献   

6.
The aim of this work was to identify genes in Lactococcus lactis subsp. lactis IL1403 and Lactococcus lactis subsp. cremoris Wg2 important for adsorption of the 936-species phages bIL170 and phi 645, respectively. Random insertional mutagenesis of the two L. lactis strains was carried out with the vector pGh9:ISS1, and integrants that were resistant to phage infection and showed reduced phage adsorption were selected. In L. lactis IL1403 integration was obtained in the ycaG and rgpE genes, whereas in L. lactis Wg2 integration was obtained in two genes homologous to ycbC and ycbB of L. lactis IL1403. rgpE and ycbB encode putative glycosyltransferases, whereas ycaG and ycbC encode putative membrane-spanning proteins with unknown functions. Interestingly, ycaG, rgpE, ycbC, and ycbB are all part of the same operon in L. lactis IL1403. This operon is probably involved in biosynthesis and transport of cell wall polysaccharides (WPS). Binding and infection studies showed that phi645 binds to and infects L. lactis Wg2, L. lactis IL1403, and L. lactis IL1403 strains with pGh9:ISS1 integration in ycaG and rgpE, whereas bIL170 binds to and infects only L. lactis IL1403 and cannot infect Wg2. These results indicate that phi 645 binds to a WPS structure present in both L. lactis IL1403 and L. lactis Wg2, whereas bIL170 binds to another WPS structure not present in L. lactis Wg2. Binding of bIL170 and phi 645 to different WPS structures was supported by alignment of the receptor-binding proteins of bIL170 and phi 645 that showed no homology in the C-terminal part.  相似文献   

7.
【目的】寻找精氨酸代谢途径中与酸胁迫相关的关键作用因素。【方法】通过在Lactococcus lactis NZ9000中分别过量表达来源于Lactobacillus casei Zhang的精氨酰琥珀酸合成酶(ASS)和精氨酰琥珀酸裂解酶(ASL)改变精氨酸代谢提高酸胁迫抗性。【结果】与对照菌株对比,重组菌株在环境胁迫下表现了较高的生长性能、存活率和发酵性能。生理学分析发现,酸胁迫环境下,重组菌株细胞有较高的胞内NH4+、ATP含量和H+-ATPase活性,并显著提高了精氨酸脱亚胺酶(ADI)途径中的氨基酸浓度。进一步的转录分析发现,天冬氨酸合成、精氨酸代谢相关的基因转录水平上调。【结论】在L.lactis NZ9000中过量表达ASS或ASL可以引发精氨酸代谢流量的上调,进而提高了细胞的多种胁迫抗性。精氨酸合成途径广泛存在于多种微生物中,为微生物,尤其是工业微生物提高胁迫抗性提供了新思路。  相似文献   

8.
9.
Lactococcus lactis subsp. lactis strains isolated from various sprouted seed products were able to transfer the ability to ferment raffinose in conjugation experiments at frequencies between 10−4 and 10−7 per donor cell. There was no evidence of plasmid transfer, but pulsed-field gel electrophoresis analysis showed that all transconjugants had acquired large chromosomal insertions indicative of conjugative transposons. Raffinose transconjugants contained inserts of 45 or 60 kb at one of two chromosomal sites, and these inserts contained two copies of an element related to the lactococcal insertion sequence ISS1.  相似文献   

10.
The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis in continuous cultures subjected to step changes in dilution rate. Both shift-up and shift-down experiments were carried out, and these experiments showed that the enzyme pyruvate formate-lyase (PFL) plays a key role in the regulation of the shift. Pyruvate formate-lyase in vivo activity was regulated both at the level of gene expression and by allosteric modulation of the enzyme. A simple mathematical model was proposed to estimate the relative significance of the regulatory mechanisms involved.  相似文献   

11.
12.
The branched-chain amino acid transport system of Lactococcus lactis was solubilized with n-octyl beta-D-gluco-pyranoside and reconstituted into proteoliposomes. Transport activity was recovered only when solubilization was performed in the presence of acidic phospholipids. Omission of acidic phospholipids during solubilization resulted in an inactive transport protein and the activity could not be restored in the reconstitution step. Similar results have been obtained for the arginine/ornithine exchange protein from Pseudomonas aeruginosa and L. lactis. Functional reconstitution of the transport protein requires the presence of aminophospholipids or glycolipids in the liposomes (Driessen, A.J.M., Zheng, T., In't Veld, G., Op den Kamp, J.A.F. and Konings, W.N. (1988) Biochemistry 27, 865-872). We propose that during the detergent solubilization the acidic phospholipids protect the transport systems against denaturation by preventing delipidation.  相似文献   

13.
The distribution of carbon flux at the pyruvate node was investigated in Lactococcus lactis under anaerobic conditions with mutant strains having decreased lactate dehydrogenase activity. Strains previously selected by random mutagenesis by H. Boumerdassi, C. Monnet, M. Desmazeaud, and G. Corrieu (Appl. Environ. Microbiol. 63, 2293-2299, 1997) were found to have single punctual mutations in the ldh gene and presented a high degree of instability. The strain L. lactis JIM 5711 in which lactate dehydrogenase activity was diminished to less than 30% of the wild type maintained homolactic metabolism. This was due to an increase in the intracellular pyruvate concentration, which ensures the maintained flux through the lactate dehydrogenase. Pyruvate metabolism was linked to the flux limitation at the level of glyceraldehyde-3-phosphate dehydrogenase, as previously postulated for the parent strain (C. Garrigues, P. Loubière, N. D. Lindley, and M. Cocaign-Bousquet (1997) J. Bacteriol. 179, 5282-5287, 1997). However, a strain (L. lactis JIM 5954) in which the ldh gene was interrupted reoriented pyruvate metabolism toward mixed metabolism (production of formate, acetate, and ethanol), though the glycolytic flux was not strongly diminished. Only limited production of acetoin occurred despite significant overflow of pyruvate. Intracellular metabolite profiles indicated that the in vivo glyceraldehyde-3-phosphate dehydrogenase activity was no longer flux limiting in the Deltaldh strain. The shift toward mixed acid fermentation was correlated with the lower intracellular trioses phosphate concentration and diminished allosteric inhibition of pyruvate formate lyase.  相似文献   

14.
The catabolic control protein CcpA is the highly conserved regulator of carbon metabolism in Gram-positive bacteria. We recently showed that Lactococcus lactis, a fermenting bacterium in the family of Streptococcaceae, is capable of respiration late in growth when haem is added to aerated cultures. As the start of respiration coincides with glucose depletion from the medium, we hypothesized that CcpA is involved in this metabolic switch and investigated its role in lactococcal growth under aeration and respiration conditions. Compared with modest changes observed in fermentation growth, inactivation of ccpA shifts metabolism to mixed acid fermentation under aeration conditions. This shift is due to a modification of the redox balance via derepression of NADH oxidase, which eliminates oxygen and decreases the NADH pool. CcpA also plays a decisive role in respiration metabolism. Haem addition to lag phase ccpA cells results in growth arrest and cell mortality. Toxicity is due to oxidative stress provoked by precocious haem uptake. We identify the repressor of the haem transport system and show that it is a target of CcpA activation. We propose that CcpA-mediated repression of haem uptake is a means of preventing oxidative damage at the start of exponential growth. CcpA thus appears to govern a regulatory network that coordinates oxygen, iron and carbon metabolism.  相似文献   

15.
The enzyme pyruvate formate-lyase (PFL) from Lactococcus lactis was produced in Escherichia coli and purified to obtain anti-PFL antibodies that were shown to be specific for L. lactis PFL. It was demonstrated that activated L. lactis PFL was sensitive to oxygen, as in E. coli, resulting in the cleavage of the PFL polypeptide. The PFL protein level and its in vivo activity and regulation were shown by Western blotting, enzyme-linked immunosorbent assay, and metabolite measurement to be dependent on the growth conditions. The PFL level during anaerobic growth on the slowly fermentable sugar galactose was higher than that on glucose. This shows that variation in the PFL protein level may play an important role in the regulation of metabolic shift from homolactic to mixed-acid product formation, observed during growth on glucose and galactose, respectively. During anaerobic growth in defined medium, complete activation of PFL was observed. Strikingly, although no formate was produced during aerobic growth of L. lactis, PFL protein was indeed detected under these conditions, in which the enzyme is dispensable due to the irreversible inactivation of PFL by oxygen. In contrast, no oxygenolytic cleavage was detected during aerobic growth in complex medium. This observation may be the result of either an effective PFL deactivase activity or the lack of PFL activation. In E. coli, the PFL deactivase activity resides in the multifunctional alcohol dehydrogenase ADHE. It was shown that in L. lactis, ADHE does not participate in the protection of PFL against oxygen under the conditions analyzed. Our results provide evidence for major differences in the mechanisms of posttranslational regulation of PFL activity in E. coli and L. lactis.  相似文献   

16.
Arginine deiminase (ADI, E.C. 3.5.3.6), one of the arginine deprivation enzymes, exhibits anticarcinogenic activities. The present study investigated the anti-inflammatory activities of the purified recombinant ADI originating from Lactococcus lactis ssp. lactis ATCC7962 (LADI). LADI dose-dependently inhibited lipopolysaccharide (LPS)-induced upregulation of inducible nitric oxide synthase and the production of nitric oxide in RAW 264.7 murine macrophages. The induction of cyclooxygenase-2 expression and subsequent production of prostaglandin E2 by LPS was also attenuated by LADI treatment. Moreover, LADI inhibited the production of interleukin-6 in LPS-stimulated RAW 264.7 macrophages. These results indicate that LADI exerts anti-inflammatory effects, which may in part explain its chemopreventive potential.  相似文献   

17.
18.
19.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

20.
Diacetyl is an important food flavor compound produced by certain strains of citrate-metabolizing lactic acid bacteria. Citrate is converted to pyruvate, from which diacetyl is produced via intermediate alpha-acetolactate. This paper reports the cloning and analysis of the gene (aldB) encoding alpha-acetolactate decarboxylase from Lactococcus lactis MG1363. Deletion of the MG1363 chromosomal aldB gene was achieved by double crossover homologous recombination. The mutant strain was found to produce diacetyl; alpha-acetolactate decarboxylase activity was eliminated. Overexpression of the cloned ilvBN genes (encoding an alpha-acetolactate synthase) in the aldB deletion strain produced even higher levels of alpha-acetolactate, acetoin, and diacetyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号