首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Calcium ion-regulated thin filaments from vascular smooth muscle.   总被引:5,自引:4,他引:1       下载免费PDF全文
Myosin and actin competition tests indicated the presence of both thin-filament and myosin-linked Ca2+-regulatory systems in pig aorta and turkey gizzard smooth-muscle actomyosin. A thin-filament preparation was obtained from pig aortas. The thin filaments had no significant ATPase activity [1.1 +/- 2.6 nmol/mg per min (mean +/- S.D.)], but they activated skeletal-muscle myosin ATPase up to 25-fold [500 nmol/mg of myosin per min (mean +/- S.D.)] in the presence of 10(-4) M free Ca2+. At 10(-8) M-Ca2+ the thin filaments activated myosin ATPase activity only one-third as much. Thin-filament activation of myosin ATPase activity increased markedly in the range 10(-6)-10(-5) M-Ca2+ and was half maximal at 2.7 x 10(-6) M (pCa2+ 5.6). The skeletal myosin-aorta-thin-filament mixture gave a biphasic ATPase-rate-versus-ATP-concentration curve at 10(-8) M-Ca2+ similar to the curve obtained with skeletal-muscle thin filaments. Thin filaments bound up to 9.5 mumol of Ca2+/g in the presence of MgATP2-. In the range 0.06-27 microM-Ca2+ binding was hyperbolic with an estimated binding constant of (0.56 +/- 0.07) x 10(6) M-1 (mean +/- S.D.) and maximum binding of 8.0 +/- 0.8 mumol/g (mean +/- S.D.). Significantly less Ca2+ bound in the absence of ATP. The thin filaments contained actin, tropomyosin and several other unidentified proteins. 6 M-Urea/polyacrylamide-gel electrophoresis at pH 8.3 showed proteins that behaved like troponin I and troponin C. This was confirmed by forming interspecific complexes between radioactive skeletal-muscle troponin I and troponin C and the aorta thin-filament proteins. The thin filaments contained at least 1.4 mumol of a troponin C-like protein/g and at least 1.1 mumol of a troponin I-like protein/g.  相似文献   

2.
Synapsin I is a synaptic vesicle-associated protein which inhibits neurotransmitter release, an effect which is abolished upon its phosphorylation by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Based on indirect evidence, it was suggested that this effect on neurotransmitter release may be achieved by the reversible anchoring of synaptic vesicles to the actin cytoskeleton of the nerve terminal. Using video-enhanced microscopy, we have now obtained experimental evidence in support of this model: the presence of dephosphorylated synapsin I is necessary for synaptic vesicles to bind actin; synapsin I is able to promote actin polymerization and bundling of actin filaments in the presence of synaptic vesicles; the ability to cross-link synaptic vesicles and actin is specific for synapsin I and is not shared by other basic proteins; the cross-linking between synaptic vesicles and actin is specific for the membrane of synaptic vesicles and does not reflect either a non-specific binding of membranes to the highly surface active synapsin I molecule or trapping of vesicles within the thick bundles of actin filaments; the formation of the ternary complex is virtually abolished when synapsin I is phosphorylated by CaM kinase II. The data indicate that synapsin I markedly affects synaptic vesicle traffic and cytoskeleton assembly in the nerve terminal and provide a molecular basis for the ability of synapsin I to regulate the availability of synaptic vesicles for exocytosis and thereby the efficiency of neurotransmitter release.  相似文献   

3.
Myosin light chain kinase binds to actin-containing filaments from cells with a greater affinity than to F-actin. However, it is not known if this binding in cells is regulated by Ca2+/calmodulin as it is with F-actin. Therefore, the binding properties of the kinase to stress fibers were examined in smooth muscle-derived A7r5 cells. Full-length myosin light chain kinase or a truncation mutant lacking residues 2-142 was expressed as chimeras containing green fluorescent protein at the C terminus. In intact cells, the full-length kinase bound to stress fibers, whereas the truncated kinase showed diffuse fluorescence in the cytoplasm. After permeabilization with saponin, the fluorescence from the truncated kinase disappeared, whereas the fluorescence of the full-length kinase was retained on stress fibers. Measurements of fluorescence intensities and fluorescence recovery after photobleaching of the full-length myosin light chain kinase in saponin-permeable cells showed that Ca2+/calmodulin did not dissociate the kinase from these filaments. However, the filament-bound kinase was sufficient for Ca2+-dependent phosphorylation of myosin regulatory light chain and contraction of stress fibers. Thus, dissociation of myosin light chain kinase from actin-containing thin filaments is not necessary for phosphorylation of myosin light chain in thick filaments. We note that the distance between the N terminus and the catalytic core of the kinase is sufficient to span the distance between thin and thick filaments.  相似文献   

4.
T Okabe  K Sobue 《FEBS letters》1987,213(1):184-188
A new 84/82 kDa calmodulin-binding protein, which also interacts with actin filaments, tubulin and spectrin, was purified from the bovine synaptosomal membrane. The binding of calmodulin to this protein was Ca2+-dependent, and was inhibited by trifluoperazine, the association constant being calculated to be 2.2 X 10(6) M-1. Maximally, 1 mol of calmodulin bound to 1 mol of the purified protein. This protein was phosphorylated by both kinase II (Ca2+- and calmodulin-dependent kinase) and cyclic AMP-dependent kinase. In addition, antibody against this protein was demonstrated to have an immunological crossreactivity with synapsin I in the synaptosomal membrane.  相似文献   

5.
Striated muscle thin filaments adopt different quaternary structures, depending upon calcium binding to troponin and myosin binding to actin. Modification of actin subdomain 2 alters troponin-tropomyosin-mediated regulation, suggesting that this region of actin may contain important protein-protein interaction sites. We used yeast actin mutant D56A/E57A to examine this issue. The mutation increased the affinity of tropomyosin for actin 3-fold. The addition of Ca(2+) to mutant actin filaments containing troponin-tropomyosin produced little increase in the thin filament-myosin S1 MgATPase rate. Despite this, three-dimensional reconstruction of electron microscope images of filaments in the presence of troponin and Ca(2+) showed tropomyosin to be in a position similar to that found for muscle actin filaments, where most of the myosin binding site is exposed. Troponin-tropomyosin bound with comparable affinity to mutant and wild type actin in the absence and presence of calcium, and in the presence of myosin S1, tropomyosin bound very tightly to both types of actin. The mutation decreased actin-myosin S1 affinity 13-fold in the presence of troponin-tropomyosin and 2.6-fold in the absence of the regulatory proteins. The results suggest the importance of negatively charged actin subdomain 2 residues 56 and 57 for myosin binding to actin, for tropomyosin-actin interactions, and for regulatory conformational changes in the actin-troponin-tropomyosin complex.  相似文献   

6.
The equilibrium constant for binding of the gelsolin-actin complex to the barbed ends of actin filaments was measured by the depolymerizing effect of the gelsolin-actin complex on actin filaments. When the gelsolin-actin complex blocks monomer consumption at the lengthening barbed ends of treadmilling actin filaments, monomers continue to be produced at the shortening pointed ends until a new steady state is reached in which monomer production at the pointed ends is balanced by monomer consumption at the uncapped barbed ends. By using this effect the equilibrium constant for binding was determined to be about 1.5 X 10(10) M-1 in excess EGTA over total calcium (experimental conditions: 1 mM MgCl2, 100 mM KCl, pH 7.5, 37 degrees C). In the presence of Ca2+ the equilibrium constant was found to be in the range of or above 10(11) M-1. The rate constant of binding of the gelsolin-actin complex to the barbed ends was measured by inhibition of elongation of actin filaments. Nucleation of new filaments by the gelsolin-actin complex towards the pointed ends was prevented by keeping the monomer concentration below the critical monomer concentration of the pointed ends where the barbed ends of treadmilling actin filaments elongate and the pointed ends shorten. The gelsolin-actin complex was found to bind fourfold faster to the barbed ends in the presence of Ca2+ (10 X 10(6) M-1 s-1) than in excess EGTA (2.5 X 10(6) M-1 s-1). Dissociation of the gelsolin-actin complex from the barbed ends can be calculated to be rather slow. In excess EGTA the rate constant of dissociation is about 1.7 X 10(-4) s-1. In the presence of Ca2+ this dissociation rate constant is in the range of or below 10(-4) s-1.  相似文献   

7.
Caldesmon was originally purified from gizzard smooth muscle as a major calmodulin-binding protein which also interacts with actin filaments. It has an alternative binding ability to either calmodulin or actin filaments depending upon the concentration of Ca2+ ("flip-flop binding"). Two forms of caldesmon (Mr's in the range of 120-150 kDa and 70-80 kDa) have been demonstrated in a wide variety of smooth muscles and nonmuscle cells. Immunohistochemical studies suggest that caldesmon is colocalized with actin filaments in vivo. Considering its abundance, the Ca2+-dependent flip-flop binding ability to either calmodulin or actin filaments, and its intracellular localization, caldesmon is expected to be involved in contractile events. Recent results from our laboratory have led to the conclusion that caldesmon regulates the smooth muscle and nonmuscle actin-myosin interaction and the smooth muscle actin-high Mr actin-binding protein (ABP or filamin) interactin in a flip-flop manner. It might function in cell motility by regulating the contractile system.  相似文献   

8.
Interactions of the components of reconstituted thin filaments were investigated using a tropomyosin internal deletion mutant, D234, in which actin-binding pseudo-repeats 2, 3, and 4 are missing. D234 retains regions of tropomyosin that bind troponin and form end-to-end tropomyosin bonds, but has a length to span only four instead of seven actin monomers. It inhibits acto-myosin subfragment 1 ATPase (acto-S-1 ATPase) and filament sliding in vitro in both the presence and absence of Ca(2+) (, J. Biol. Chem. 272:14051-14056) and lowers the affinity of S-1.ADP for actin while increasing its cooperative binding. Electron microscopy and three-dimensional reconstruction of reconstituted thin filaments containing actin, troponin, and wild-type or D234 tropomyosin were carried out to determine if Ca(2+)-induced movement of D234 occurred in the filaments. In the presence and absence of Ca(2+), the D234 position was indistinguishable from that of the wild-type tropomyosin, demonstrating that the mutation did not affect normal tropomyosin movement induced by Ca(2+) and troponin. These results suggested that, in the presence of Ca(2+) and troponin, D234 tropomyosin was trapped on filaments in the Ca(2+)-induced position and was unable to undergo a transition to a completely activated position. By adding small amounts of rigor-bonded N-ethyl-maleimide-treated S-1 to mutant thin filaments, thus mimicking the myosin-induced "open" state, inhibition could be overcome and full activation restored. This myosin requirement for full activation provides support for the existence of three functionally distinct thin filament states (off, Ca(2+)-induced, myosin-induced; cf.;, J. Mol. Biol. 266:8-14). We propose a further refinement of the three-state model in which the binding of myosin to actin causes allosteric changes in actin that promote the binding of tropomyosin in an otherwise energetically unfavorable "open" state.  相似文献   

9.
Eukaryotic translation elongation factor 1A (eEF1A) is known to be a multifunctional protein. In Tetrahymena, eEF1A is localized to the division furrow and has the character to bundle filamentous actin (F-actin). eEF1A binds F-actin and the ratio of eEF1A and actin is approximately 1:1 (Kurasawa et al., 1996). In this study, we revealed that eEF1A itself exists as monomer and dimer, using gel filtration column chromatography. Next, eEF1A monomer and eEF1A dimer were separated using gel filtration column, and their interaction with F-actin was examined with cosedimentation assay and electron microscopy. In the absence of Ca2+/calmodulin (CaM), eEF1A dimer bundled F-actin and coprecipitated with F-actin at low-speed centrifugation, but eEF1A monomer did not. In the presence of Ca2+/CaM, eEF1A monomer increased, while dimer decreased. To examine that Ca2+/CaM alters eEF1A dimer into monomer and inhibits bundle formation of F-actin, Ca2+/CaM was added to F-actin bundles formed by eEF1A dimer. Ca2+/CaM separated eEF1A dimer to monomer, loosened F-actin bundles and then dispersed actin filaments. Simultaneously, Ca2+/CaM/ eEF1A monomer complexes were dissociated from actin filaments. Therefore, Ca2+/CaM reversibly regulates the F-actin bundling activity of eEF1A.  相似文献   

10.
Actin thin filaments containing bound tropomyosin (Tm) or tropomyosin troponin (Tm.Tn) exist in two states ("off" and "on") with different affinities for myosin heads (S1), which results in the cooperative binding of S1. The rate of S1 binding to, and dissociating from, actin, Tm.actin, and Tm.Tn.actin, monitored by light scattering (LS), was compared with the rate of change in state, monitored by the excimer fluorescence (Fl) of a pyrene label attached to Tm. The ATP-induced S1 dissociation showed similar exponential decreases in LS for actin.S1, Tm.actin.S1, and Tm.Tn.actin.S1 +/- Ca2+. The Fl change, however, showed a delay that was greater for Tm.Tn.actin than Tm.actin, independent of Ca2+. The S1 binding kinetics gave observed rate constants for the S1-induced change in state that were 5-6 times the observed rate constants of S1 binding to Tm.actin, which were increased to 10-12 for Tm.Tn.actin, independent of Ca2+. The rate of the Fl signals showed that the on/off states were in rapid equilibrium. These data indicate that the apparent cooperative unit for Tm.actin is 5-6 actin subunits rather than the minimum structural unit size of 7, and is increased to 10-12 subunits for Tm.Tn.actin, independent of the presence of Ca2+. Thus, Tm appears semi-flexible, and Tn increases communication between neighboring structural units. A general model for the dynamic transitions involved in muscle regulation is presented.  相似文献   

11.
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.  相似文献   

12.
We have purified an actin binding protein from amebas of Dictyostelium discoideum which we call 95,000-dalton protein (95K). This protein is rod shaped, approximately 40 nm long in the electron microscope, contains two subunits measuring 95,000 daltons each, and cross-links actin filaments. Cross-linking activity was demonstrated by using falling-ball viscometry, Ostwald viscometry, and electron microscopy. Cross-linking activity is optimal at 0.1 microM Ca++ and pH 6.8, but is progressively inhibited at higher Ca++ and pH levels over a physiological range. Half-maximal inhibition occurs at 1.6 microM free Ca++ and pH 7.3, respectively. Sedimentation experiments demonstrate that elevated Ca++ and pH inhibit the binding of 95K to F-actin which explains the loss of cross-linking activity. Electron microscopy demonstrates that under optimal conditions for cross-linking, 95K protein bundles actin filaments and that this bundling is inhibited by microM Ca++. Severing of actin filaments by 95K was not observed in any of the various assays under any of the solution conditions used. Hence, 95K protein is a rod-shaped, dimeric, Ca++- and pH-regulated actin binding protein that cross-links but does not sever actin filaments.  相似文献   

13.
Collagen phagocytosis is a critical mediator of extracellular matrix remodeling. Whereas the binding step of collagen phagocytosis is facilitated by Ca2+-dependent, gelsolin-mediated severing of actin filaments, the regulation of the collagen internalization step is not defined. We determined here whether phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] regulation of gelsolin is required for collagen internalization. In gelsolin null fibroblasts transfected with gelsolin severing mutants, actin severing and collagen binding were strongly impaired but internalization and actin monomer addition at collagen bead sites were much less affected. PI(4,5)P2 accumulated around collagen during internalization and was associated with gelsolin. Cell-permeable peptides mimicking the PI(4,5)P2 binding site of gelsolin blocked actin monomer addition, the association of gelsolin with actin at phagosomes, and collagen internalization but did not affect collagen binding. Collagen beads induced recruitment of type 1 gamma phosphatidylinositol phosphate kinase (PIPK1gamma661) to internalization sites. Dominant negative constructs and RNA interference demonstrated a requirement for catalytically active PIPK1gamma661 for collagen internalization. We conclude that separate functions of gelsolin mediate sequential stages of collagen phagocytosis: Ca2+-dependent actin severing facilitates collagen binding, whereas PI(4,5)P2-dependent regulation of gelsolin promotes the actin assembly required for internalization of collagen fibrils.  相似文献   

14.
Rabbit skeletal muscle alpha-tropomyosin (Tm) and the deletion mutant (D234Tm) in which internal actin-binding pseudo-repeats 2, 3, and 4 are missing [Landis et al. (1997) J. Biol. Chem. 272, 14051-14056] were used to investigate the interaction between actin and tropomyosin or actin and troponin (Tn) by means of fluorescence resonance energy transfer (FRET). FRET between Cys-190 of D234Tm and Gln-41 or Cys-374 of actin did not cause any significant Ca2+-induced movement of D234Tm, as reported previously for native Tm [Miki et al. (1998) J. Biochem. 123, 1104-1111]. FRET did not show any significant S1-induced movement of Tm and D234Tm on thin filaments either. The distances between Cys-133 of TnI, and Gln-41 and Cys-374 of actin on thin filaments reconstituted with D234Tm (mutant thin filaments) were almost the same as those on thin filaments with native Tm (wild-type thin filaments) in the absence of Ca2+. Upon binding of Ca2+ to TnC, these distances on mutant thin filaments increased by approximately 10 A in the same way as on wild-type thin filaments, which corresponds to a Ca2+-induced conformational change of thin filaments [Miki et al. (1998) J. Biochem. 123, 324-331]. The rigor binding of myosin subfragment 1 (S1) further increased these distances by approximately 7 A on both wild-type and mutant thin filaments when the thin filaments were fully decorated with S1. This indicates that a further conformational change on thin filaments was induced by S1 rigor-binding (S1-induced or open state). Plots of the extent of S1-induced conformational change vs. molar ratio of S1 to actin showed that the curve for wild-type thin filaments is hyperbolic, whereas that for mutant thin filaments is sigmoidal. This suggests that the transition to the S1-induced state on mutant thin filaments is depressed with a low population of rigor S1. In the absence of Ca2+, the distance also increased on both wild-type and mutant thin filaments close to the level in the presence of Ca2+ as the molar ratio of S1 to actin increased up to 1. The curves are sigmoidal for both wild-type and mutant thin filaments. The addition of ATP completely reversed the changes in FRET induced by rigor S1 binding. For mutant thin filaments, the transition from the closed state to the open state in the presence of ATP is strongly depressed, which results in the inhibition of acto-myosin ATPase even in the presence of Ca2+. The present FRET measurements provide structural evidence for three states of thin filaments (relaxed, Ca2+-induced or closed, and S1-induced or open states) for the regulation mechanism of skeletal muscle contraction.  相似文献   

15.
Application of the myosin competition test (Lehman, W., and Szent-Gy?rgyi, A. G. (1975) J. Gen. Physiol. 66, 1-30) to chicken gizzard actomyosin indicated that this smooth muscle contains a thin filament-linked regulatory mechanism. Chicken gizzard thin filaments, isolated as described previously (Marston, S. B., and Lehman, W. (1985) Biochem. J. 231, 517-522), consisted almost exclusively of actin, tropomyosin, caldesmon, and an unidentified 32-kilodalton polypeptide in molar ratios of 1:1/6:1/26:1/17, respectively. When reconstituted with phosphorylated gizzard myosin, these thin filaments conferred Ca2+ sensitivity (67.8 +/- 2.1%; n = 5) on the myosin Mg2+-ATPase. On the other hand, no Ca2+ sensitivity of the myosin Mg2+-ATPase was observed when purified gizzard actin or actin plus tropomyosin was reconstituted with phosphorylated gizzard myosin. Native thin filaments were rendered essentially free of caldesmon and the 32-kilodalton polypeptide by extraction with 25 mM MgCl2. When reconstituted with phosphorylated gizzard myosin, caldesmon-free thin filaments and native thin filaments exhibited approximately the same Ca2+ sensitivity (45.1 and 42.7%, respectively). The observed Ca2+ sensitivity appears, therefore, not to be due to caldesmon. Only trace amounts of two Ca2+-binding proteins could be detected in native thin filaments. These were identified as calmodulin (present at a molar ratio to actin of 1:733) and the 20-kilodalton light chain of myosin (present at a molar ratio to actin of 1:270). The Ca2+ sensitivity observed in an in vitro system reconstituted from gizzard thin filaments and either skeletal myosin or phosphorylated gizzard myosin is due, therefore, to calmodulin and/or an unidentified minor protein component of the thin filaments which may be an actin-binding protein involved in regulating actin filament structure in a Ca2+-dependent manner.  相似文献   

16.
ATP-dependent movement of actin filaments on smooth muscle myosin was investigated by using the in vitro motility assay method in which myosin was fixed on the surface of a coverslip in a phosphorylated or an unphosphorylated state. Actin filaments slid on gizzard myosin phosphorylated with myosin light chain kinase (MLCK) at a rate of 0.35 micron/s, but did not slide at all on unphosphorylated myosin. The movement of actin filaments on phosphorylated myosin was stopped by perfusion of phosphatase. Subsequent perfusion with a solution containing MLCK, calmodulin, and Ca2+ enabled actin filaments to move again. The sliding velocities on monophosphorylated and diphosphorylated myosin by MLCK were not different. Actin filaments did not move on myosin phosphorylated with protein kinase C (PKC). The sliding velocity on myosin phosphorylated with both MLCK and PKC was identical to that on myosin phosphorylated only with MLCK. Gizzard tropomyosin enhanced the sliding velocity to 0.76 micron/s. Gizzard caldesmon decreased the sliding velocity with increase in its concentration. At a 5-fold molar ratio of caldesmon to actin, the movement stopped completely. This inhibitory effect of caldesmon was relieved upon addition of excess calmodulin and Ca2+.  相似文献   

17.
gCap39 is an actin filament end-capping protein which has a threefold repeated domain structure similar to the N-terminal half of gelsolin. However, unlike gelsolin, gCap39 does not sever actin filaments and dissociates completely from filament ends after calcium removal. We have capitalized on these differences to explore the structural basis for actin filament capping, severing, and their regulation. Using truncated gCap39, generated by limited proteolysis or deletion mutagenesis, we found that actin filament capping requires multiple gCap domains, and almost the entire molecule is necessary for optimal activity. gCap39 domain I, like the equivalent domain in gelsolin, contains an actin monomer binding site. gCap39 domains II-III are, however, different from gelsolin in that they do not bind to the side of actin filaments. Since filament side binding is hypothesized to be the first step in severing, lack of side binding may explain why gCap39 does not sever. This is confirmed directly by swapping gCap39 domains II-III for the side-binding gelsolin domains to generate a chimera which severs actin filaments. The chimera is Ca2+ independent in actin filament severing and capping, although gCap39 domain I itself is regulated by Ca2+.  相似文献   

18.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

19.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

20.
Phosphorylation of the 20-kDa regulatory light chain of myosin catalyzed by a Ca(2+)/calmodulin-dependent myosin light chain kinase is important in the initiation of smooth muscle contraction and other contractile processes in non-muscle cells. It has been previously shown that residues 1-142 of smooth muscle myosin light chain kinase are necessary for high-affinity binding to actin-containing filaments in cells (1). To further localize the region of the kinase required for binding, a series of N-terminal deletion mutants as well as several N-terminal glutathione S-transferase fusion proteins were constructed. Cosedimentation assays showed that a peptide containing residues 1-75 binds to purified smooth muscle myofilaments. Furthermore, the N-terminal peptide was sufficient for high-affinity binding to actin stress fibers in smooth muscle cells in vivo. Alanine scanning mutagenesis in the fusion protein identified residues Asp-30, Phe-31, Arg-32, and Leu-35 as important for binding in vitro. There are two additional DFRXXL motifs located at residues 2-7 and 58-63. The DFR residues in these three motifs were individually replaced by alanine residues in the full-length kinase. Each of these mutations significantly decreased myosin light chain kinase binding to myofilaments in vitro, and each abolished high-affinity binding to actin-containing filaments in smooth muscle cells in vivo. These results identify a unique structural motif comprised of three repeat consensus sequences in the N terminus of myosin light chain kinase necessary for high-affinity binding to actin-containing filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号