首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In barley (Hordeum vulgare L.) root cells, activity for oxidizing protoporphyrinogen to protoporphyrin (protoporphyrinogen oxidase), a step in chlorophyll and heme synthesis, was found both in the crude mitochondrial fraction and in a plasma membrane enriched fraction separated by a sucrose gradient technique utilized for preparing plasma membranes. The specific activity (expressed as nanomoles of protoporphyrin formed per hour per milligram protein) in the mitochondrial fraction was 8 and in the plasma membrane enriched fraction was 4 to 6. The plasma membrane enriched fraction exhibited minimal cytochrome oxidase activity and no carotenoid content, indicating little contamination with mitochondrial or plastid membranes. Etioplasts from etiolated barley leaves exhibited a protoporphyrinogen oxidase specific activity of 7 to 12. Protoporphyrinogen oxidase activity in the barley root mitochondrial fraction and etioplast extracts was more than 90% inhibited by assay in the presence of the diphenyl ether herbicide acifluorfen methyl, but the activity in the plasma membrane enriched fraction exhibited much less inhibition by this herbicide (12 to 38% inhibition) under the same assay conditions. Acifluorfen-methyl inhibition of the organellar (mitochondrial or plastid) enzyme was maximal upon preincubation of the enzyme with 4 mm dithiothreitol, although a lesser degree of inhibition was noted if the organellar enzyme was preincubated in the presence of other reductants such as glutathione or ascorbate. Acifluorfen-methyl caused only 20% inhibition if the enzyme was preincubated in buffer without reductants. Incubation of barley etioplast extracts with the earlier tetrapyrrole precursor coproporphyrinogen and acifluorfen-methyl resulted in the accumulation of protoporphyrinogen, which could be converted to protoporphyrin even in the presence of the herbicide by the addition of the plasma membrane enriched fraction from barley roots. These findings have implications for the toxicity of diphenyl ether herbicides, whose light induced tissue damage is apparently caused by accumulation of the photoreactive porphyrin intermediate, protoporphyrin, when the organellar protoporphyrinogen oxidase enzyme is inhibited by herbicides. Our results suggest that the protoporphyrinogen that accumulates as a result of herbicide inhibition of the organellar enzyme can be oxidized to protoporphyrin by a protoporphyrinogen oxidizing activity that is located at sites such as the plasma membrane, which is much less sensitive to inhibition by diphenylether herbicides.  相似文献   

2.
It is now generally accepted that protoporphyrinogen oxidase is the target-enzyme for diphenyl-ether-type herbicides. Recent studies [Camadro, J-M., Matringe M., Scalla, R. & Labbe, P. (1991) Biochem. J. 277, 17-21] have revealed that in maize, diphenyl ethers competitively inhibit protoporphyrinogen oxidase with respect to its substrate, protoporphyrinogen IX. In this study, we show that, in purified pea etioplast, [3H]acifluorfen specifically binds to a single class of high-affinity binding sites with an apparent dissociation constant of 6.2 +/- 1.3 nM and a maximum density of 29 +/- 5 nmol/g protein. [3H]Acifluorfen binding reaches equilibrium in about 1 min at 30 degrees C. Half dissociation occurs in less than 30 s, indicating that the binding is fully reversible. The specificity of [3H]acifluorfen binding to protoporphyrinogen oxidase is examined. [3H]Acifluorfen binding is inhibited by all the peroxidizing molecules tested. The phthalimide derivative, N-(4-chloro-2-fluoro-5-isopropoxy)phenyl-3,4,5,6-tetra hydrophthalimide, exerts a mixed-competitive inhibition on this binding. The effects of all these molecules on the binding of [3H]acifluorfen are tightly linked to their capacity to inhibit pea etioplast protoporphyrinogen oxidase activity. Furthermore, protoporphyrinogen IX, the substrate of the reaction catalyzed by protoporphyrinogen oxidase, was able to competitively inhibit the binding of [3H]acifluorfen. In contrast, protoporphyrin IX, the product of the reaction, did not inhibit this binding. All these results provide clear evidence that in pea etioplasts, [3H]acifluorfen exclusively binds to protoporphyrinogen oxidase, that the protoporphyrinogen oxidase inhibitors tested so far bind to the same region of the enzyme and that this region overlaps the catalytic site of the enzyme.  相似文献   

3.
Diphenyl ether herbicides induce an accumulation of protoporphyrin IX in plant tissues. By analogy to human porphyria, the accumulation could be attributed to decreased (Mg or Fe)-chelatase or protoporphyrinogen oxidase activities. Possible effects of acifluorfen-methyl on these enzymes were investigated in isolated corn (maize, Zea mays) etioplasts, potato (Solanum tuberosum) and mouse mitochondria, and yeast mitochondrial membranes. Acifluorfen-methyl was strongly inhibitory to protoporphyrinogen oxidase activities whatever their origins [concn. causing 50% inhibition (IC50) = 4 nM for the corn etioplast enzyme]. By contrast, it was roughly 100,000 times less active on (Mg or Fe)-chelatase activities (IC50 = 80-100 microM). Our results lead us to propose protoporphyrinogen oxidase as a cellular target for diphenyl ether herbicides.  相似文献   

4.
The specific binding of the herbicide acifluorfen 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid to corn etioplast membranes is competitively inhibited by protoporphyrinogen IX, the substrate of protoporphyrinogen oxidase. Three other peroxidizing molecules, oxadiazon [5-terbutyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol -2-one], LS 82556 [(S)3-N-(methylbenzyl)carbamoyl-5-propionyl-2,6-lutidine], and M&B 39279 [5-amino-4-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazol], also compete with acifluorfen for its binding site. The four herbicides thus bind to the same site, or to closely located sites, on the enzyme protoporphyrinogen oxidase.  相似文献   

5.
Purification and characterization of murine protoporphyrinogen oxidase   总被引:8,自引:0,他引:8  
H A Dailey  S W Karr 《Biochemistry》1987,26(10):2697-2701
The penultimate enzyme of the heme biosynthetic pathway, protoporphyrinogen oxidase (EC 1.3.3.4), has been purified to apparent homogeneity from mouse liver mitochondria. The purification involves solubilization from mitochondrial membranes with sodium cholate followed by ammonium sulfate fractionation and gel filtration on a Sepharose CL-6B column. The eluate is adjusted to 0.67 M (NH4)2SO4 and loaded onto a phenyl-Sepharose column. After salt washes, the enzyme is eluted with 0.5% sodium cholate and 0.5% Brij 35. The final step is high-pressure ion-exchange chromatography on a DEAE-5PW column. The purified protein has a molecular weight of approximately 65,000 by gel filtration chromatography on Sepharose CL-6B in the presence of 0.5% sodium cholate. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows a single band corresponding to a molecular weight of 65,000. The absorption spectrum of the purified enzyme shows no evidence of a chromophoric cofactor. Purified protoporphyrinogen oxidase has a Km for protoporphyrinogen IX of 5.6 microM with a Vmax of 2300 nmol mg-1 h-1. It utilizes meso- and hematoporphyrinogen at about 10% the level of protoporphyrinogen. The pH optimum is broad with a maximum at 7.1. There is no stimulation or inhibition by any tested divalent cations, and sulfhydryl reagents have no inhibitory effect on the purified enzyme.  相似文献   

6.
7.
Oleic acid stimulates enzymatic protoporphyrinogen oxidation by extracts of barley mitochondria and etioplasts. Greater stimulation occurred with Triton X-100 extracts which had been passed over a Sephacryl S-200 column than with crude Triton extracts, suggesting that purification may have removed a lipid factor required for optimal enzymatic activity. Palmitic acid, various phospholipids and detergents, or esters and alcohols of oleic acid did not substitute for free oleic acid. Linoleic acid caused a greater stimulation of protoporphyrinogen oxidation in both crude and purified barley organelle extracts and also caused a slow chemical oxidation of protoporphyrinogen. The stimulating effect of unsaturated fatty acids on enzymatic protoporphyrinogen oxidation may indicate a lipid requirement for this membrane bound enzyme or may also indicate involvement of unsaturated lipid oxidation in plant protoporphyrinogen oxidation.  相似文献   

8.
The polypeptides of etioplast and chloroplast fractions, purified on Percoll discontinuous gradient, were phosphorylated in vitro using (γ-32P)ATP, resolved by SDS-PAGE and autoradiographed. In general, about 15-18 phosphopolypeptides in the range of 14-150 kD were distinctly visible in autoradiograms of both organelle fractions with varying degree of radiolabel incorporation. Although short-term irradiation with red or far-red light did not have any significant effect on phosphorylation status of etioplast polypeptides, in vivo irradiation with 1 h white light, followed by in vitro phosphorylation, decreased phosphorylation of a 116 kD polypeptide and increased the phosphorylation of polypeptides of 38 kD and a doublet around 20 kD. Strikingly, the phosphorylation status of 116 kD etioplast polypeptide was adversely affected by Ca2+ as well, and this phosphopolypeptlde was not distinctly visible in the autoradiogram of the chloroplast fraction proteins. However, in vitro phosphorylation of 98, 57 and 50 kD polypeptides of both etioplast and chloroplast fractions was found to be Ca2+ dependent. Unlike Ca2+, 3′,5′-cyclic AMP down-regulated the phosphorylation of several polypeptides of both etioplasts and chloroplasts, including 98 and 50 kD, and up-regulated the phosphorylation of 32 and 57 kD polypeptides. The significance of these observations on changes in phosphoprotein profile of etioplasts and chloroplasts, as influenced by light, Ca2+ and cyclic nucleotides, has been discussed.  相似文献   

9.
The membrane bound enzyme oxidizing protoporphyrinogen to protoporphyrin, a step in heme and chlorophyll synthesis, was purified to a single prominent polypeptide band on SDS/PAGE from barley mitochondrial fractions. It contained a variety of lipids including 0.66 mg of phosphatidyl ethanolamine and 0.46 mg of free fatty acid per mg of protein. Iron, but no flavins or cytochromes, was detected. In the presence of glutathione, enzymatic oxidation was inhibited by the iron chelator o-phenanthroline but was stimulated by iron EDTA. The purified enzyme was inhibited by reductants such as glutathione, ascorbate, NADH and NADPH. These findings are compatible with some direct or indirect involvement of lipids and iron in this oxidation in plants.  相似文献   

10.
Protoporphyrinogen oxidase has been solubilized from plasma membranes of Desulfovibrio gigas. The enzyme was purified to apparent homogeneity with single silver-stained protein bands on isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. This protoporphyrinogen oxidase has a molecular weight (Mr) of 148,000 and is composed of three dissimilar subunits of Mrs 12,000, 18,500, and 57,000, which are held together by sulfhydryl bonds. Unlike other protoporphyrinogen oxidases, which use molecular oxygen as an electron acceptor, this enzyme does not couple to oxygen. The protoporphyrinogen oxidase donates electrons to 2,6-dichlorophenol-indophenol but not to NAD+, NADP+, flavin adenine dinucleotide, or flavin mononucleotide. The natural physiological electron acceptor of the protoporphyrinogen oxidase from D. gigas is unknown. By using 2,6-dichlorophenol-indophenol as the electron acceptor, the Km and Vmax values for oxidation of protoporphyrinogen were determined to be 21 microM and 8.38 nmol/min per 70 micrograms of protein, respectively. The catalytic rate constant, Kcat, was calculated to be 17.7 mol of protoporphyrin formed per mole of enzyme per min of incubation, and the Kcat/Km was 0.84. Energies of activation were calculated from Arrhenius plots with 7,429 cal (ca. 31,080 J)/mol per degree below 10 degrees C and 1,455 cal (ca. 6,088, J)/mol per degree above 10 degrees C. Optimum enzyme activity was at 23 degrees C, and inhibition was observed with both N-ethylmaleimide and iodoacetamide.  相似文献   

11.
Plant protoporphyrinogen oxidase is of particular interest since it is the last enzyme of the common branch for chlorophyll and heme biosynthetic pathways. In addition, it is the target enzyme for diphenyl ether-type herbicides, such as acifluorfen. Two distinct methods were used to investigate the localization of this enzyme within Percoll-purified spinach chloroplasts. We first assayed the enzymatic activity by spectrofluorimetry and we analyzed the specific binding of the herbicide acifluorfen, using highly purified chloroplast fractions. The results obtained give clear evidence that chloroplast protoporphyrinogen oxidase activity is membrane-bound and is associated with both chloroplast membranes, i.e. envelope and thylakoids. Protoporphyrinogen oxidase specific activity was 7-8 times higher in envelope membranes than in thylakoids, in good agreement with the number of [3H]acifluorfen binding sites in each membrane system: 21 and 3 pmol/mg protein, respectively, in envelope membranes and thylakoids. On a total activity basis, 25% of protoporphyrinogen oxidase activity were associated with envelope membranes. The presence of protoporphyrinogen oxidase in chloroplast envelope membranes provides further evidence for a role of this membrane system in chlorophyll biosynthesis. In contrast, the physiological significance of the enzyme associated with thylakoids is still unknown, but it is possible that thylakoid protoporphyrinogen oxidase could be involved in heme biosynthesis.  相似文献   

12.
Adenosine deaminase (ADA) was partially purified 486- and 994-fold from rat liver mitochondria and cytosol, respectively. Relative molecular mass of the enzymes from both fractions was 34,000. Km for adenosine and 2'-deoxy-adenosine were 3.08 x 10(-5) M and 3.03 x 10(-5) M for mitochondrial ADA and 3.12 x 10(-5) M and 2.87 x 10(-5) M for cytosolic ADA. The enzyme from both subcellular fractions had the maximum activity at pH 7.5-8.0, and pI 5.2 and 4.2 for mitochondrial and cytosolic enzyme, respectively. The enzyme was inhibited by erythro-9-(2-hydroxy-3-nonyl)adenine and 2'-deoxycoformycin with Ki 4.4 x 10(-7) M and 3.2 x 10(-7) M for mitochondrial ADA and 4.9 x 10(-7) M 2.8 x 10(-7) M for cytosolic ADA. Among the natural nucleoside and deoxynucleotide derivatives tested, deoxy-GTP and UTP inhibited only cytosolic adenosine deaminase by 60% and 40%, respectively.  相似文献   

13.
The penultimate step of haem biosynthesis, the oxidation of protoporphyrinogen to protoporphyrin, was examined with purified murine hepatic protoporphyrinogen oxidase (EC 1.3.3.4) in detergent solution. The kinetic parameters for the two-substrate (protoporphyrinogen and oxygen) reaction were determined. The limiting Km for protoporphyrinogen when oxygen is saturating is 6.6 microM, whereas the Km for oxygen with saturating concentrations of protoporphyrinogen is 125 microM. The kcat. for the overall reaction is 447 h-1. The ratio of kcat. to the Km for protoporphyrinogen is approx. 20-fold greater than the kcat./Km,O2 ratio. The ratio of protoporphyrin formed to dioxygen consumed is 1:3. Ubiquinone-6, ubiquinone-10 and dicoumarol stimulate protoporphyrinogen oxidase activity at low concentrations (less than 15 microM), whereas coenzyme Q0 and menadione show no activation at these concentrations. Above 30 microM, all five quinones inhibit the enzyme activity. FAD does not significantly affect the activity of the enzyme. Bilirubin, a product of haem catabolism, is shown to be a competitive inhibitor of the penultimate enzyme of the haem-biosynthetic pathway, protoporphyrinogen oxidase, with a calculated Ki of 25 microM. The terminal enzyme of haem-biosynthetic pathway, namely ferrochelatase, is not inhibited by bilirubin at concentrations over double the Ki value for the oxidase. In contrast with other enzymic systems, the toxicity of bilirubin is not reversed by binding to albumin.  相似文献   

14.
The mitochondrial location of protoporphyrinogen oxidase   总被引:4,自引:0,他引:4  
Using the digitonin method and subsequent fractionation of rat liver mitochondria, protoporphyrinogen oxidase (penultimate enzyme in the heme biosynthesis pathway) was found to be closely associated with the mitochondrial inner membrane fraction. Chemical treatment with non-specific probes (trypsin and diazobenzene sulfonate) of either intact or inverted mitoplasts, indicated that protoporphyrinogen oxidase was anchored within the lipid bilayer of the inner membrane. Protoporphyrinogen had an equal access to the active site of the enzyme from both sides of the inner membrane and its transformation to protoporphyrin did not appear to be energy-dependent. Studies of protoporphyrinogen synthesis from exogenously added coproporphyrinogen in either intact or hypoosmotically treated mitochondria underlined the importance of the peculiar submitochondrial location of coproporphyrinogen oxidase and protoporphyrinogen oxidase for the transfer of substrates to the inner membrane.  相似文献   

15.
A novel pumpkin (Cucurbita pepo) short-chain acyl-coenzyme A (CoA) oxidase (ACOX) was purified to homogeneity by hydrophobic-interaction, hydroxyapatite, affinity, and anion-exchange chromatography. The purified enzyme is a tetrameric protein, consisting of apparently identical 47-kD subunits. The protein structure of this oxidase differs from other plant and mammalian ACOXs, but is similar to the protein structure of mammalian mitochondrial acyl-CoA dehydrogenase (ACDH) and the recently identified plant mitochondrial ACDH. Subcellular organelle separation by sucrose density gradient centrifugation revealed that the enzyme is localized in glyoxysomes, whereas no immunoreactive bands of similar molecular weight were detected in mitochondrial fractions. The enzyme selectively catalyzes the oxidation of CoA esters of fatty acids with 4 to 10 carbon atoms, and exhibits the highest activity on C-6 fatty acids. Apparently, the enzyme has no activity on CoA esters of branched-chain or dicarboxylic fatty acids. The enzyme is slightly inhibited by high concentrations of substrate and it is not inhibited by Triton X-100 at concentrations up to 0.5% (v/v). The characteristics of this novel ACOX enzyme are discussed in relation to other ACOXs and ACDHs.  相似文献   

16.
1. Histidine-pyruvate aminotransferase (isoenzyme 1) was purified to homogeneity from the mitochondrial and supernatant fractions of rat liver, as judged by polyacrylamide-gel electrophoresis and isolectric focusing. Both enzyme preparations were remarkably similar in physical and enzymic properties. Isoenzyme 1 had pI8.0 and a pH optimum of 9.0. The enzyme was active with pyruvate as amino acceptor but not with 2-oxoglutarate, and utilized various aromatic amino acids as amino donors in the following order of activity: phenylalanine greater than tyrosine greater than histidine. Very little activity was found with tryptophan and 5-hydroxytryptophan. The apparent Km values were about 2.6mM for histidine and 2.7 mM for phenylalanine. Km values for pyruvate were about 5.2mM with phenylalanine as amino donor and 1.1mM with histidine. The aminotransferase activity of the enzyme towards phenylalanine was inhibited by the addition of histidine. The mol.wt. determined by gel filtration and sucrose-density-gradient centrifugation was approx. 70000. The mitochondrial and supernatant isoenzyme 1 activities increased approximately 25-fold and 3.2-fold respectively in rats repeatedly injected with glucagon for 2 days. 2. An additional histidine-pyruvate aminotransferase (isoenzyme 2) was partially purified from both the mitochondrial and supernatant fractions of rat liver. Nearly identical properties were observed with both preparations. Isoenzyme 2 had pI5.2 and a pH optimum of 9.3. The enzyme was specific for pyruvate and did not function with 2-oxoglutarate. The order of effectiveness of amino donors was tyrosine = phenylalanine greater than histidine greater than tryptophan greater than 5-hydroxytryptophan. The apparent Km values for histidine and phenylalanine were about 0.51 and 1.8 mM respectively. Km values for pyruvate were about 3.5mM with phenylalanine and 4.7mM with histidine as amino donors. Histidine inhibited phenylalanine aminotransferase activity of the enzyme. Gel filtration and sucrose-density-gradient centrifugation yielded a mol.wt. of approx. 90000. Neither the mitochondrial nor the supernatant isoenzyme 2 activity was elevated by glucagon injection.  相似文献   

17.
The photobleaching herbicide, acifluorfen-methyl (AFM), has been reported to be an inhibitor of the heme and chlorophyll biosynthetic enzyme protoporphyrinogen oxidase (Protox) in several plant species. However, AFM had no effect on the levels of Protox activity measured in a mitochondrial fraction from soybean roots. In contrast, AFM inhibited Protox activity in etioplasts from barley leaves and in mitochondria from barley roots, but the extent of inhibition varied depending upon the assay conditions and was maximal only in the presence of 5 mM dithiothreitol (DTT). AFM inhibition was enhanced by preincubation of barley organelle extract in the presence of DTT. Preincubation of barley extract with DTT and AFM together (but not with AFM alone) caused extensive enzyme inhibition which was not reversible by dialysis. These findings have implications for the mechanism of AFM action and for the differential effect of these herbicides on crop and weed species. AFM had no effect on the Protox activity of membranes from free-living bacterial cell of Bradyrhizobium japonicum or Escherichia coli, or on the high levels of Protox activity associated with the plant-derived membrane surrounding the symbiotic bacteria within the soybean root nodule.  相似文献   

18.
A primary objective of the present study has been to determine the changes which occur in Rana catesbeiana liver organelle membranes during thyroxine-induced metamorphosis. To this end, enzyme and cytochrome profiles were determined for mitochondria, microsomes, and nuclear membrane fractions isolated from livers of R. catesbeiana tadpoles which had been fasted for 6 days at 15 +/- 0.5 degrees and then immersed in thyroxine, 2.6 X 10(-8) M, for periods of up to 12 days at 23.5 +/- 0.4 degrees. The ratio of total succinate-cytochrome c reductase activity in the initial homogenate fraction to the total activity of this mitochondrial "marker" enzyme recovered in the final mitochondrial fraction remained constant, approximately 0.5, throughout the course of thyroxine treatment; however, after a 3- to 4-day latency the mitochondrial protein mass recovered per unit mass of initial homogenate protein was found to increase significantly (approximately 2-fold by Day 10 of thyroxine treatment). A similar increase was also observed in the yield of microsomal, but not nuclear membrane, protein mass as a function of thyroxine treatment. Prolonged thyroxine treatment (12 days) resulted in approximately 50% decreases in tadpole liver homogenate and microsomal NADH-cytochrome c reductase specific activities; in contrast, mitochondrial and nuclear membrane NADH-cytochrome c reductase specific activities were not altered under the same conditions. In addition, homogenate and microsomal NADPH-cytochrome c reductase specific activities were found to have increased significantly after 12 days of thyroxine treatment; however, the specific activity of NADPH-cytochrome c reductase in the mitochondrial fraction was unchanged. It was also observed that thyroxine treatment resulted in increases in homogenate and microsomal glucose-6-phosphatase specific activities, whereas the mitochondrial as well as nuclear membrane glucose-6-phosphatase specific activities remained unchanged. Furthermore, in contrast to homogenate and mitochondrial monoamine oxidase specific activities, which decreased 30 and 40%, respectively, as a consequence of thyroxine treatment (12 days), the succinate-cytochrome c reductase and oligomycin-sensitive Mg2+ ATPase specific activities determined for these fractions increased significantly. In all instances, changes as a result of thyroxine treatment in membrane-localized homogenate or organelle enzyme specific activities were apparent only after a 3- to 4-day initial latent period. The in vitro effects of thyroxine (10(-10) - 10(-5) M) on the membrane-localized enzyme activities examined in this study were either negligible or, as in the case of mitochondrial succinate-cytochrome c reductase and microsomal NADH-cytochrome c reductase, opposite to the changes observed in response to in vivo thyroxine treatment, with the exception of microsomal NADPH-cytochrome c reductase activity which was enhanced approximately 2-fold by 10(-5) M thyroxine...  相似文献   

19.
Protoporphyrinogen oxidase, an enzyme which catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX in yeast cells, has been found in several mammalian tissues. It has been extracted from rat liver mitochondria by sonication in the presence of salt and detergent and partially purified. The enzyme is similar in many respects to yeast protoporphyrinogen oxidase. Based on its behavior on Sephadex G-200 the molecular weight of the enzyme is approximately 35,000. Catalysis by protoporphyrinogen oxidase was specific for proteoporphyrinogen IX (apparent Km of 11 muM) and proceeded maximally at pH 8.6 to 8.7. The effect of temperature on enzyme activity plotted according to Arrhenius gave a value of E of 9,100 calories per mol. Enzyme activity was inhibited in the presence of high salt concentrations and temperatures above 45 degrees. Oxygen was essential for protoporphyrinogen oxidase activity and an alternative elevtron acceptor has not yet been found. No requirement for a metal or other cofactor could be demonstrated. The presence of monothiol groups was indicated; however, it is not known whether the thiol groups are involved directly in the binding of substrate to the enzyme.  相似文献   

20.
On subcellular fractionation, carbonyl reductase (EC 1.1.1.184) activity in guinea pig lung was found in the mitochondrial, microsomal, and cytosolic fractions; the specific activity in the mitochondrial fraction was more than five times higher than those in the microsomal and cytosolic fractions. Further separation of the mitochondrial fraction on a sucrose gradient revealed that about half of the reductase activity is localized in mitochondria and one-third in a peroxidase-rich fraction. Although carbonyl reductase in both the mitochondrial and microsomal fractions was solubilized effectively by mixing with 1% Triton X-100 and 1 M KCl, the enzyme activity in the mitochondrial fraction was more highly enhanced by the solubilization than was that in the microsomal fraction. Carbonyl reductases were purified to homogeneity from the mitochondrial, microsomal, and cytosolic fractions. The three enzymes were almost identical in catalytic, structural, and immunological properties. Carbonyl reductase, synthesized in a rabbit reticulocyte lysate cell-free system, was apparently the same in molecular size as the subunit of the mature enzyme purified from cytosol. These results indicate that the same enzyme species is localized in the three different subcellular compartments of lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号