首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planktonic bacteria passing to a sessile state during the formation of a biofilm undergo many gene expression and phenotypic changes. These transformations require a significant time to establish. Inversely, cells extracted from a biofilm should also require a significant time before acquiring the same physiological characteristics as planktonic cells. Relatively few studies have addressed the kinetics of this inverse transformation process. We tested one aspect, namely, the contamination potential of freshly extracted Escherichia coli biofilm cells, precultured in a synthetic medium, in a rich liquid growth medium. We compared the time between inoculation and the beginning of the growth phase of freshly extracted biofilm cells, and suspended exponential and suspended stationary phase cells precultured in the same synthetic medium. Unexpectedly, the lag time for the extracted biofilm cells was the same as the lag time of the suspended exponential phase cells and significantly less than the lag time of the suspended stationary phase cells. The lag times were determined by an impedance technique. Cells extracted from biofilms, i.e., biofilms formed in canalizations and broken up by hydrodynamic forces, are an important source of contamination. Our work shows, in the case of E. coli, the high potential of freshly extracted biofilm cells to reinfect a new medium.  相似文献   

2.
The alteration of a eubiosis status in honeybees’ gut microbiota is directly linked to the occurrence of diseases, and likely to the honeybees decline. Since fructophilic lactobacilli were suggested as symbionts for honeybees, we mechanistically investigated their behaviour under the exposure to agrochemicals (Roundup, Mediator and Reldan containing glyphosate, imidacloprid and chlorpyrifos-methyl as active ingredients respectively) and plant secondary metabolites (nicotine and p-coumaric acid) ingested by honeybees as part of their diet. The effects of exposure to agrochemicals and plant secondary metabolites were assessed both on planktonic cells and sessile communities of three biofilm-forming strains of Apilactobacillus kunkeei. We identified the high sensitivity of A. kunkeei planktonic cells to Roundup and Reldan, while cells embedded in mature biofilms had increased resistance to the same agrochemicals. However, agrochemicals still exerted a substantial inhibitory/control effect if the exposure was during the preliminary steps of biofilm formation. The level of susceptibility resulted to be strain-specific. Exopolysaccharides resulted in the main component of extracellular polymeric matrix (ECM) in biofilm, but the exposure to Roundup caused a change in ECM production and composition. Nicotine and p-coumaric acid had a growth-promoting effect in sessile communities, although no effect was found on planktonic growth.  相似文献   

3.
Cells of Pseudomonas aeruginosa were adhered to polymethyl methacrylate, polyvinyl acetate, polyvinyl chloride, polyhydroxyethyl methacrylate, mixed-acrylic, silicone, and natural latex materials. Planktonic bacteria and bacteria that adhered to the test materials were compared for their uptake of either L-[3,4,5-3H] leucine or [methyl-3H] thymidine during growth in a minimal medium. Leucine incorporation was reduced and thymidine uptake was negligible in adherent bacteria for up to 8 h following primary attachment by which time cells in the planktonic state showed active uptake of both substrates. These reduced uptake periods correlated with lag phases of growth of adherent cells as determined with a sonication-release plate count procedure and analyses of adenosine triphosphate (ATP). The extent of the lag phase of the adherent populations was dependent on initial densities of adhered cells and the nature of the substratum. Received 02 December 1998/ Accepted in revised form 25 April 1999  相似文献   

4.
Abstract The objective of the present study was to determine whether cultivation of a degradative community on substrates with varying degrees of chlorination and complexity in chemical structure, as well as cultivation in batch and flow cell culture, would alter the community's functional capability. The community was isolated from oil-contaminated soil and maintained in the laboratory on 2,4,6-trichlorobenzoic acid for 5 months before its ability to grow on 15 different chemicals as sole carbon source was evaluated in batch and flow cell systems. While the community could grow and develop biofilms in flow cells on all the substrates, only 11 of the 15 substrates could support growth in batch culture. Although biofilm development was less extensive on chemicals such as pentachlorophenol (2.09% average area covered by biofilm; average biofilm depth = 3 μm) than on 2,4,6-trichlorobenzoic acid (50.84% area covered; biofilm depth = 6.4 μm), no correlation was observed between the degree of chlorination, or number of rings, and the number of planktonic cells or biofilm biomass. In contrast, physicochemical characteristics such as the octanol/water partition coefficient had a significant effect on the development of biofilm biomass. In the case of planktonic communities, the degree of chlorination and ring number also had no effect on the BIOLOG carbon utilization profiles of the resulting communities. Although the sessile communities generally clustered separately from their planktonic counterparts, principal component analysis of carbon utilization profiles of the sessile communities showed different grouping between growth on chlorinated and nonchlorinated substrates. Analysis of the degradative community maintained on 2,4,6-trichlorobenzoic acid over an extended period further showed that adaptation to a new chemical environment is a rather slow process, since the substrate utilization profiles did not stabilize even after 12 months. These results demonstrate the flexibility in metabolic ability and community structure found in microbial communities. Received: 30 November 1998; Accepted: 19 May 1999  相似文献   

5.
Bacterial species are found primarily as residents of complex surface-associated communities, known as biofilms. Although these structures prevail in nature, bacteria still exist in planktonic lifestyle and differ from those in morphology, physiology, and metabolism. This study aimed to investigate the influence of physiological states of Pseudomonas aeruginosa and Escherichia coli in cell-to-cell interactions. Filtered supernatants obtained under planktonic and biofilm cultures of each single species were supplemented with tryptic soy broth (TSB) and used as the growth media (conditioned media) to planktonic and sessile growth of both single- and two-species cultures. Planktonic bacterial growth was examined through OD640 measurement. One-day-old biofilms were evaluated in terms of biofilm biomass (CV), respiratory activity (XTT), and CFU number. Conditioned media obtained either in biofilm or in planktonic mode of life triggered a synergistic effect on planktonic growth, mainly for E. coli single cultures growing in P. aeruginosa supernatants. Biofilms grown in the presence of P. aeruginosa biofilms-derived metabolites presented less mass and activity. These events highlight that, when developed in biofilm, P. aeruginosa release signals or metabolites able to prejudice single and binary biofilm growth of others species and of their own species. However, products released by their planktonic counterparts did not impair biofilm growth or activity. E. coli, living as planktonic or sessile cultures, released signals and metabolites or removed un-beneficial compounds which promoted the growth and activity of all the species. Our findings revealed that inter and intraspecies behaviors depend on the involved bacteria and their adopted mode of life.  相似文献   

6.
Abstract

The aim of the present study was to evaluate the efficacy of Elastoguard? silver-releasing rubber in preventing Pseudomonas aeruginosa biofilm formation in water. Biofilm formation by P. aeruginosa under various conditions in an in vitro model system was compared for silver-releasing and conventional rubber. Under most conditions tested, the numbers of sessile cells attached to silver-releasing rubber were considerably lower with reference to conventional rubber, although the effect diminished with increasing volumes. The release of silver also resulted in a decrease in planktonic cells. By exposing both materials simultaneously to conditions for biofilm growth, it became obvious that the antibiofilm effect was due to a reduction in the number of planktonic cells, rather than to contact-dependent killing of sessile cells. The data demonstrate that the use of silver-releasing rubber reduces P. aeruginosa biofilm in water and reduces the number of planktonic cells present in the surrounding solution.  相似文献   

7.
The aim of this work was to compare the glucose uptake of biofilms formed by four different Staphylococcus epidermidis strains as well as to compare between sessile and planktonic cells of the same strain. Biofilm cells showed a lower level of glucose uptake compared to planktonic cells. Moreover, glucose uptake by cells in the sessile form was strongly influenced by biofilm composition. Therefore, this work helps to confirm the phenotypic variability of S. epidermidis strains and the different behaviour patterns between sessile and free cells.  相似文献   

8.
Population dynamics was studied in a 52-l biotrickling filter (BTF) operated for 182 days and used to clean air contaminated with styrene vapors. In the BTF, biomass grew either as free-floating (planktonic) or attached (sessile) microorganisms. PCR-amplified 16S rDNA fragments from planktonic and sessile cells within the bioreactor were analyzed using denaturing gradient gel electrophoresis (DGGE). The results indicated that the complexity of biofilm community was always more pronounced than the complexity of the planktonic cell community. Notably, Rhodococcus erythropolis was identified, based on DNA sequence analysis, as one of the biofilm-specific strains. It was also shown that the inoculum, even when enriched with styrene-degrading bacteria, was not adapted to the growth conditions imposed by the BTF. After a 35-day microbial acclimation period, the DGGE analysis also showed less variation in the banding pattern representing the microbial complexity of the biofilm. In addition, the phylogenic fingerprinting method used demonstrated similar banding profiles in the biofilm along the filter bed. Electronic Publication  相似文献   

9.
Overall cell surface hydrophobicity (CSH) is predicted to play an important role during biofilm formation in Candida albicans but is the result of many expressed proteins. This study compares the CSH status and CSH1 gene expression in C. albicans planktonic cells, sessile biofilm, and dispersal cells. Greater percentages of hydrophobic cells were found in non-adhered (1.5 h) and dispersal forms (24 or 48 h) (41.34±4.17% and 39.52±7.45%, respectively), compared with overnight planktonic cultures (21.69±3.60%). Results from quantitative real-time PCR confirmed greater up-regulation of the CSH1 gene in sessile biofilm compared with both planktonic culture and dispersal cells. Up-regulation was also greater in dispersal cells compared with planktonic culture. The markedly increased CSH found both in C. albicans biofilm, and in cells released during biofilm formation could provide an advantage to dispersing cells building new biofilm.  相似文献   

10.
Attachment of Shiga toxigenic Escherichia coli (STEC) to surfaces and the formation of biofilms may enhance persistence in a food processing environment and present a risk of contaminating products. Seven strains of STEC and three non-STEC strains were selected to compare two biofilm quantification methods; epifluorescence microscopy on stainless steel (SS) and a microtitre plate assay. The influence of prior growth in planktonic (nutrient broth) and sessile (nutrient agar) culture on biofilm production, as well as expression of surface structures and the possession of antigen 43 (encoded by agn43) on biofilm formation were also investigated. Biofilms were produced in diluted nutrient broth at 25 degrees C for 24 and 48 h. Curli expression was determined using congo red indicator agar, while the presence of agn43 was determined using polymerase chain reaction. No correlation was found between counts for epifluorescence microscopy on SS and the absorbance values obtained with the microtitre plate method for planktonic and sessile grown cultures. Different abilities of individual STEC strains to attach to SS and microtitre plates were found with some strains attaching better to each surface following growth in either planktonic or sessile culture. All O157 STEC strains had low biofilm counts on SS for planktonic and sessile grown cultures; however, one STEC O157:H- strain (EC516) had significantly greater (p<0.05) biofilm production on microtitre plates compared to the other O157 STEC strains. EC516 and other STEC (O174:H21 and O91:H21) strains expressing curli fimbriae were found to produce significantly greater (p<0.05) biofilms on microtitre plates compared to the non-curli expressing strains. No relationship was found between the production of type-I fimbriae, motility, agn43 and bacterial physicochemical properties (previously determined) and biofilm formation on SS or microtitre plates. Variations between the two biofilm determination methods may suggest that the biofilm production on microtitre plates may not be appropriate to represent other surfaces such as SS and that caution should be taken when selecting a method to quantify biofilm production on a surface.  相似文献   

11.

Three different types of biocides, viz. formaldehyde (FM), glutaraldehyde (GA) and isothiozolone (ITZ) were used to control planktonic and sessile populations of two marine isolates of sulphate‐reducing bacteria (SRB). The influence of these biocides on the initial attachment of cells to mild steel surfaces, on subsequent biofilm formation and on the activity of hydrogenase enzymes within developed biofilms was evaluated. In the presence of biocides the rate and degree of colonization of mild steel by SRB depended on incubation time, bacterial isolate and the type of biocide used. Although SRB differed in their susceptibility to biocides, for all isolates the biofilm population was more resistant to the treatment than the planktonic population. GA showed highest efficiency in controlling planktonic and sessile SRB compared with the other two biocides. The activity of the enzyme hydrogenase measured in SRB biofilms varied between isolates and with the biocide treatment. No correlation was found between the number of sessile cells and hydrogenase activity.  相似文献   

12.
Growth rate control of adherent, sessile populations was achieved by the controlled perfusion of membrane-associated bacterial biofilms by the method of Gilbert et al. (P. Gilbert, D. G. Allison, D. J. Evans, P. S. Handley, and M. R. W. Brown, Appl. Environ. Microbiol. 55:1308-1311, 1989). Changes in cell surface hydrophobicity were evaluated with respect to growth rate for such sessile Escherichia coli cells and compared with those of suspended (planktonic) populations grown in a chemostat. Newly formed daughter cells shed at the various growth rates from the biofilm during its growth and development were also included in the study. Surface hydrophobicity decreased with growth rate similarly for both planktonic and sessile E. coli; no significant differences were noted between the two. Daughter cells dislodged from the biofilm, however, were significantly more hydrophilic than those remaining, indicating that hydrophobicity changed during the division cycle. Our data support the hypothesis that dispersal of cells from adhesive biofilms and recolonization of new surfaces reflect cell-cycle-mediated events.  相似文献   

13.
Pseudomonas aeruginosa is a pathogenic bacterium widely investigated for its high incidence in clinical environments and its ability to form strong biofilms. During biofilm development, sessile cells acquire physiological characteristics differentiating them from planktonic cells. But after treatment with disinfectants, or to ensure survival of the species in hostile environments, biofilm cells can detach. This complicates disinfection procedures. This study aimed to physiologically characterize cells detached from a P. aeruginosa biofilm and to compare them with their sessile and planktonic counterparts. We first tested planktonic growth kinetics and capacities to form new biofilms. Then we investigated cell-surface properties. And finally, we tested in vitro susceptibility to antibiotics. The results first indicated that sessile and detached cells have similar planktonic growth kinetics and cell-surface properties, distinguishable from those of planktonic cells. Interestingly, the three populations exhibited different biofilm-forming capacities, suggesting that there is a transitional phenotype between sessile and planktonic states, at least during the first hours following cell detachment. It is important to consider this observation when developing treatments to optimize disinfection processes. Surprisingly, the three populations showed the same antibiotic susceptibility profile.  相似文献   

14.
Candida albicans is a human commensal and opportunistic pathogen that participates in biofilm formation on host surfaces and on medical devices. We used DIGE analysis to assess the cytoplasmic and non‐covalently attached cell‐surface proteins in biofilm formed on polymethylmethacrylate and planktonic yeast cells and hyphae. Of the 1490 proteins spots from cytoplasmic and 580 protein spots from the surface extracts analyzed, 265 and 108 were differentially abundant respectively (> 1.5‐fold, p <0.05). Differences of both greater and lesser abundance were found between biofilms and both planktonic conditions as well as between yeast cells and hyphae. The identity of 114 cytoplasmic and 80 surface protein spots determined represented 73 and 25 unique proteins, respectively. Analyses showed that yeast cells differed most in cytoplasmic profiling while biofilms differed most in surface profiling. Several processes and functions were significantly affected by the differentially abundant cytoplasmic proteins. Particularly noted were many of the enzymes of respiratory and fermentative pentose and glucose metabolism, folate interconversions and proteins associated with oxidative and stress response functions, host response, and multi‐organism interaction. The differential abundance of cytoplasmic and surface proteins demonstrated that sessile and planktonic organisms have a unique profile.  相似文献   

15.
16.
The molecular pathogenesis of many Staphylococcus aureus infections involves growth of bacteria as biofilm. In addition to polysaccharide intercellular adhesin (PIA) and extracellular DNA, surface proteins appear to mediate the transition of bacteria from planktonic growth to sessile lifestyle as well as biofilm growth, and can enable these processes even in the absence of PIA expression. However, the molecular mechanisms by which surface proteins contribute to biofilm formation are incompletely understood. Here we demonstrate that self‐association of the serine‐aspartate repeat protein SdrC promotes both bacterial adherence to surfaces and biofilm formation. However, this homophilic interaction is not required for the attachment of bacteria to abiotic surfaces. We identified the subdomain that mediates SdrC dimerization and subsequent cell‐cell interactions. In addition, we determined that two adjacently located amino acid sequences within this subdomain are required for the SdrC homophilic interaction. Comparative amino acid sequence analysis indicated that these binding sites are conserved. In summary, our study identifies SdrC as a novel molecular determinant in staphylococcal biofilm formation and describes the mechanism responsible for intercellular interactions. Furthermore, these findings contribute to a growing body of evidence suggesting that homophilic interactions between surface proteins present on neighbouring bacteria induce biofilm growth.  相似文献   

17.
The ability of non-tuberculous mycobacteria to form biofilms may allow for their increased resistance to currently used biocides in medical and industrial settings. This study examines the biofilm growth of Mycobacterium fortuitum and Mycobacterium marinum, using the MBEC™ assay system, and compares the susceptibility of planktonic and biofilm cells to commercially available biocides. With scanning electron microscopy, both M. fortuitum and M. marinum form biofilms that are morphologically distinct. Biocide susceptibility testing suggested that M. fortuitum biofilms displayed increased resistance over their planktonic state. This is contrasted with M. marinum biofilms, which were generally as or more susceptible over their planktonic state. Received: 15 February 2002 / Accepted: 28 March 2002  相似文献   

18.
This study investigated the physiology and behaviour following treatment with ortho-phthalaldehyde (OPA), of Pseudomonas fluorescens in both the planktonic and sessile states. Steady-state biofilms and planktonic cells were collected from a bioreactor and their extracellular polymeric substances (EPS) were extracted using a method that did not destroy the cells. Cell structure and physiology after EPS extraction were compared in terms of respiratory activity, morphology, cell protein and polysaccharide content, and expression of the outer membrane proteins (OMP). Significant differences were found between the physiological parameters analysed. Planktonic cells were more metabolically active, and contained greater amounts of proteins and polysaccharides than biofilm cells. Moreover, biofilm formation promoted the expression of distinct OMP. Additional experiments were performed with cells after EPS extraction in order to compare the susceptibility of planktonic and biofilm cells to OPA. Cells were completely inactivated after exposure to the biocide (minimum bactericidal concentration, MBC = 0.55 ± 0.20 mM for planktonic cells; MBC = 1.7 ± 0.30 mM for biofilm cells). After treatment, the potential of inactivated cells to recover from antimicrobial exposure was evaluated over time. Planktonic cells remained inactive over 48 h while cells from biofilms recovered 24 h after exposure to OPA, and the number of viable and culturable cells increased over time. The MBC of the recovered biofilm cells after a second exposure to OPA was 0.58 ± 0.40 mM, a concentration similar to the MBC of planktonic cells. This study demonstrates that persister cells may survive in biocide-treated biofilms, even in the absence of EPS.  相似文献   

19.
Recently, multidrug-resistant clinical isolates of Acinetobacter baumannii have been found to have a high capacity to form biofilm. It is well known that bacterial cells within biofilms are highly resistant to antibiotics, UV light, acid exposure, dehydration, and phagocytosis in comparison to their planktonic counterparts, which suggests that the cells in a biofilm have altered metabolic activity. To determine which proteins are up-regulated in A. baumannii biofilm cells, we performed a proteomic analysis. A clinical isolate of A. baumannii 1656-2, which was characterized to have a high biofilm forming ability, was cultivated under biofilm and planktonic conditions. Outer membrane enriched A. baumannii 1656-2 proteins were separated by two-dimensional (2-D) gel electrophoresis and the differentially expressed proteins were identified by MALDI-TOF mass spectrometry. The proteins up-regulated or expressed only in biofilm cells of A. baumannii are categorized as follows: (i) proteins processing environmental information such as the outer membrane receptor protein involved in mostly Fe transport, a sensor histidine kinase/response regulator, and diguanylate cyclase (PAS-GGEDF-EAL domain); (ii) proteins involved in metabolism such as NAD-linked malate dehydrogenase, nucleoside-diphosphate sugar epimerase, putative GalE, ProFAR isomerase, and N-acetylmuramoyl-l-alanine amidase; (iii) bacterial antibiotic resistance related proteins; and (iv) proteins related to gene repair such as exodeoxyribonuclease III and GidA. This proteomic analysis provides a fundamental platform for further studies to reveal the role of biofilm in the persistence and tolerance of A. baumannii.  相似文献   

20.
The goal of this study was to investigate the effect of the environmental conditions such as the temperature change, incubation time and surface type on the resistance of Staphylococcus aureus biofilms to disinfectants. The antibiofilm assays were performed against biofilms grown at 20 °C, 30 °C and 37 °C, on the stainless steel and polycarbonate, during 24 and 48 h. The involvement of the biofilm matrix and the bacterial membrane fluidity in the resistance of sessile cells were investigated. Our results show that the efficiency of disinfectants was dependent on the growth temperature, the surface type and the disinfectant product. The increase of growth temperature from 20 °C to 37 °C, with an incubation time of 24 h, increased the resistance of biofilms to cationic antimicrobials. This change of growth temperature did not affect the major content of the biofilm matrix, but it decreased the membrane fluidity of sessile cells through the increase of the anteiso-C19 relative amount. The increase of the biofilm resistance to disinfectants, with the rise of the incubation time, was dependent on both growth temperature and disinfectant product. The increase of the biofilm age also promoted increases in the matrix production and the membrane fluidity of sessile cells. The resistance of S. aureus biofilm seems to depend on the environment of the biofilm formation and involves both extracellular matrix and membrane fluidity of sessile cells. Our study represents the first report describing the impact of environmental conditions on the matrix production, sessile cells membrane fluidity and resistance of S. aureus biofilms to disinfectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号