首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 16S ribosomal RNA neighborhood of ribosomal protein S20 has been mapped, in both 30S subunits and 70S ribosomes, using directed hydroxyl radical probing. Cysteine residues were introduced at amino acid positions 14, 23, 49, and 57 of S20, and used for tethering 1-(p-bromoacetamidobenzyl)-Fe(II)-EDTA. In vitro reconstitution using Fe(II)-derivatized S20, together with the remaining small subunit ribosomal proteins and 16S ribosomal RNA (rRNA), yielded functional 30S subunits. Both 30S subunits and 70S ribosomes containing Fe(II)-S20 were purified and hydroxyl radicals were generated from the tethered Fe(II). Hydroxyl radical cleavage of the 16S rRNA backbone was monitored by primer extension. Different cleavage patterns in 16S rRNA were observed from Fe(II) tethered to each of the four positions, and these patterns were not significantly different in 30S and 70S ribosomes. Cleavage sites were mapped to positions 160-200, 320, and 340-350 in the 5' domain, and to positions 1427-1430 and 1439-1458 in the distal end of the penultimate stem of 16S rRNA, placing these regions near each other in three dimensions. These results are consistent with previous footprinting data that localized S20 near these 16S rRNA elements, providing evidence that S20, like S17, is located near the bottom of the 30S subunit.  相似文献   

2.
The organization of the 5' terminus region in the 16S rRNA was investigated using a series of RNA constructs in which the 5' terminus was extended by 5 nt or was shortened to give RNA molecules that started at positions -5, +1, +5, +8, +14, or +21. The structural and functional effects of the 5' extension/truncations were determined after the RNAs were reconstituted. 30S subunits containing 16S rRNA with 5' termini at -5, +1, +5, +8 and +14 had similar structures (judged by UV-induced crosslinking) and exhibited a gradual reduction in tRNA binding activity compared to that seen with 30S subunits reconstituted with native 16S rRNA. To create the 5' terminal site-specific photocrosslinking agent, the reagent azidophenacylbromide (APAB) was attached to the 5' terminus of 16S rRNA through a guanosine monophosphorothioate and the APA-16S rRNAs were reconstituted. Crosslinking carried out with the APA revealed sites in six regions around positions 300-340, 560, 900, 1080, the 16S rRNA decoding region, and at 1330. Differences in the pattern and efficiency of crosslinking for the different constructs allow distance estimates for the crosslinked sites from nucleotide G9. These measurements provide constraints for the arrangement of the RNA elements in the 30S subunit. Similar experiments carried out in the 70S ribosome resulted in a five- to tenfold lower frequency of crosslinking. This is most likely due to a repositioning of the 5' terminus upon subunit association.  相似文献   

3.
Ribosomal protein S15 binds specifically to the central domain of 16 S ribosomal RNA (16 S rRNA) and directs the assembly of four additional proteins to this domain. The central domain of 16 S rRNA along with these five proteins form the platform of the 30 S subunit. Previously, directed hydroxyl radical probing from Fe(II)-S15 in small ribonucleoprotein complexes was used to study assembly of the central domain of 16 S rRNA. Here, this same approach was used to understand the 16 S rRNA environment of Fe(II)-S15 in 30 S subunits and to determine the ribosomal proteins that are involved in forming the mature S15-16 S rRNA environment. We have identified additional sites of Fe(II)-S15-directed cleavage in 30S subunits compared to the binary complex of Fe(II)-S15/16 S rRNA. Along with novel targets in the central domain, sites within the 5' and 3' minor domains are also cleaved. This suggests that during the course of 30S subunit assembly these elements are positioned in the vicinity of S15. Besides the previously determined role for S8, roles for S5, S6+S18, and S16 in altering the 16 S rRNA environment of S15 were established. These studies reveal that ribosomal proteins can alter the assembly of regions of the 30 S subunit from a considerable distance and influence the overall conformation of this ribonucleoprotein particle.  相似文献   

4.
Directed hydroxyl radical probing was used to probe the rRNA neighborhood around protein S13 in the 30S ribosomal subunit. The unique cysteine at position 84 of S13 served as a tethering site for attachment of Fe(II)-1-(p-bromoacetamidobenzyl)-EDTA. Derivatized S13 (Fe-C84-S13) was then assembled into 30S ribosomal subunits by in vitro reconstitution with 16S rRNA and a mixture of the remaining 30S subunit proteins. Hydroxyl radicals generated from the tethered Fe(II) resulted in cleavage of the RNA backbone in two localized regions of the 3' major domain of 16S rRNA. One region spans nt 1308-1333 and is close to a site previously crosslinked to S13. A second set of cleavages is found in the 950/1230 helix. Both regions have been implicated in binding of S13 by previous chemical footprinting studies using base-specific chemical probes and solution-based hydroxyl radical probing. These results place both regions of 16S rRNA in proximity to position C84 of S13 in the three-dimensional structure of the 30S ribosomal subunit.  相似文献   

5.
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.  相似文献   

6.
7.
From previous work it was known that U3 RNA is hydrogen bonded to nucleolar 28 S to 35 S RNA and can be covalently crosslinked to RNA of greater than 28 S by irradiation in vivo with long-wave ultraviolet light in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT psoralen). Here we use a novel sandwich blot technique to identify these large nucleolar RNA species as rRNA precursors and to map the site(s) of crosslinking in vivo. The crosslink occurs between one or more residues near the 5' end of U3 RNA and a 380 nucleotide region of the rat rRNA external transcribed spacer (ETS1). We have sequenced this region of the rat ETS and we show that it includes an RNA-processing site analogous to those previously mapped to approximately 3.5 kb upstream from the 5' end of mouse and human 18 S rRNAs.  相似文献   

8.
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.  相似文献   

9.
E. coli 30S ribosomes in the inactive conformation were irradiated at 390 nm in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). This produces monoadducts in which AMT is attached to only one strand of an RNA duplex region. After unbound AMT was removed, some ribosomes were activated and then subjected to 360 nm irradiation; others were reirradiated without activation. Electron microscopic examination of 16S rRNA extracted from these two samples showed covalent rRNA loops indicative of rRNA crosslinks. The general pattern of loops closely matched that seen previously after direct psoralen crosslinking of 30S particles. However, the frequency of occurrence of one major class of loops formed by crosslinks between residues near position 500 and the 3' end was substantially lower for the activated samples, implying that the structure of the 16S rRNA in active and inactive 30S particles is different.  相似文献   

10.
The co-operative interaction of 30 S ribosomal subunit proteins S6, S8, S15 and S18 with 16 S ribosomal RNA from Escherichia coli was studied by (1) determining how the binding of each protein is influenced by the others and (2) characterizing a series of protein-rRNA fragment complexes. Whereas S8 and S15 are known to associate independently with the 16 S rRNA, binding of S18 depended upon S8 and S15, and binding of S6 was found to require S8, S15 and S18. Ribonucleoprotein (RNP) fragments were derived from the S8-, S8/S15- and S6/S8/S15/S18-16 S rRNA complexes by partial RNase hydrolysis and isolated by electrophoresis through Mg2+-containing polyacrylamide gels or by centrifugation through sucrose gradients. Identification of the proteins associated with each RNP by gel electrophoresis in the presence of sodium dodecyl sulfate demonstrated the presence of S8, S8 + S15 and S6 + S8 + S15 + S18 in the corresponding fragment complexes. Analysis of the rRNA components of the RNP particles confirmed that S8 was bound to nucleotides 583 to 605 and 624 to 653, and that S8 and S15 were associated with nucleotides 583 to 605, 624 to 672 and 733 to 757. Proteins S6, S8, S15 and S18 were shown to protect nucleotides 563 to 605, 624 to 680, 702 to 770, 818 to 839 and 844 to 891, which span the entire central domain of the 16 S rRNA molecule (nucleotides 560 to 890). The binding site for each protein contains helical elements as well as single-stranded internal loops ranging in size from a single bulged nucleotide to 20 bases. Three terminal loops and one stem-loop structure within the central domain of the 16 S rRNA were not protected in the four-protein complex. Interestingly, bases within or very close to these unprotected regions have been shown to be accessible to chemical and enzymatic probes in 30 S subunits but not in 70 S ribosomes. Furthermore, nucleotides adjacent to one of the unprotected loops have been cross-linked to a region near the 3' end of 16 S rRNA. Our observations and those of others suggest that the bases in this domain that are not sequestered by interactions with S6, S8, S15 or S18 play a role involved in subunit association or in tertiary interactions between portions of the rRNA chain that are distant from one-another in the primary structure.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Studies of Escherichia coli 30S ribosomal subunit assembly have revealed a hierarchical and cooperative association of ribosomal proteins with 16S ribosomal RNA; these results have been used to compile an in vitro 30S subunit assembly map. In single protein addition and omission studies, ribosomal protein S13 was shown to be dependent on the prior association of ribosomal protein S20 for binding to the ribonucleoprotein particle. While the overwhelming majority of interactions revealed in the assembly map are consistent with additional data, the dependency of S13 on S20 is not. Structural studies position S13 in the head of the 30S subunit > 100 A away from S20, which resides near the bottom of the body of the 30S subunit. All of the proteins that reside in the head of the 30S subunit, except S13, have been shown to be part of the S7 assembly branch, that is, they all depend on S7 for association with the assembling 30S subunit. Given these observations, the assembly requirements for S13 were investigated using base-specific chemical footprinting and primer extension analysis. These studies reveal that S13 can bind to 16S rRNA in the presence of S7, but not S20. Additionally, interaction between S13 and other members of the S7 assembly branch have been observed. These results link S13 to the 3' major domain family of proteins, and the S7 assembly branch, placing S13 in a new location in the 30S subunit assembly map where its position is in accordance with much biochemical and structural data.  相似文献   

12.
Reticulocyte lysates contain ribosome-bound and free populations of 5S RNA. The free population is sensitive to nuclease cleavage in the internal loop B, at the phosphodiester bond connecting nucleotides A54 and A55. Similar cleavage sites were detected in 5S rRNA in 60S subunits and 80S ribosomes. However, 5S rRNA in reticulocyte polysomes is insensitive to cleavage unless ribosomes are salt-washed. This suggests that a translational factor protects the backbone surrounding A54 from cleavage in polysomes. Upon nuclease treatment of mouse 60S subunits or reticulocyte lysates a small population of ribosomes released its 5S rRNA together with ribosomal protein L5. Furthermore, rRNA sequences from 5.8S, 28S and 18S rRNA were released. In 18S rRNA the sequences mainly originate from the 630 loop and stem (helix 18) in the 5' domain, whereas in 28S rRNA a majority of fragments is derived from helices 47 and 81 in domains III and V, respectively. We speculate that this type of rRNA-fragmentation may mimic a ribosome degradation pathway.  相似文献   

13.
Interaction of proteins S16, S17 and S20 with 16 S ribosomal RNA   总被引:9,自引:0,他引:9  
We have used rapid chemical probing methods to examine the effect of assembly of ribosomal proteins S16, S17 and S20 on the reactivity of individual residues of 16 S rRNA. Protein S17 strongly protects a compact region of the RNA between positions 245 and 281, a site previously assigned to binding of S20. Protein S20 also protects many of these same positions, albeit more weakly than S17. Strong S20-dependent protections are seen elsewhere in the 5' domain, most notably at positions 108, and in the 160-200 and 330 loop regions. Enenpectedly, S20 also causes protection of several bases in the 1430-1450 region, in the 3' minor domain. In the presence of the primary binding proteins S4, S8 and S20, we observe a variety of effects that result from assembly of the secondary binding protein S16. Most strongly protected are nucleotides around positions 50, 120, 300 to 330 and 360 in the 5' domain, and positions 606 to 630 in the central domain. In addition, numerous nucleotides in the 5' and central domains exhibit enhanced reactivity in response to S16. Interestingly, the strength of the S20-dependent effects in the 1430-1450 region is attenuated in the presence of S4 + S8 + S20, and restored in the presence of S4 + S8 + S20 + S16. Finally, the previously observed rearrangement of the 300 region stem-loop that occurs during assembly is shown to be an S16-dependent event. We discuss these findings with respect to assignment of RNA binding sites for these proteins, and in regard to the co-operativity of ribosome assembly.  相似文献   

14.
15.
Assembly of the 30S ribosomal subunit occurs in a highly ordered and sequential manner. The ordered addition of ribosomal proteins to the growing ribonucleoprotein particle is initiated by the association of primary binding proteins. These proteins bind specifically and independently to 16S ribosomal RNA (rRNA). Two primary binding proteins, S8 and S15, interact exclusively with the central domain of 16S rRNA. Binding of S15 to the central domain results in a conformational change in the RNA and is followed by the ordered assembly of the S6/S18 dimer, S11 and finally S21 to form the platform of the 30S subunit. In contrast, S8 is not part of this major platform assembly branch. Of the remaining central domain binding proteins, only S21 association is slightly dependent on S8. Thus, although S8 is a primary binding protein that extensively contacts the central domain, its role in assembly of this domain remains unclear. Here, we used directed hydroxyl radical probing from four unique positions on S15 to assess organization of the central domain of 16S rRNA as a consequence of S8 association. Hydroxyl radical probing of Fe(II)-S15/16S rRNA and Fe(II)-S15/S8/16S rRNA ribonucleoprotein particles reveal changes in the 16S rRNA environment of S15 upon addition of S8. These changes occur predominantly in helices 24 and 26 near previously identified S8 binding sites. These S8-dependent conformational changes are consistent with 16S rRNA folding in complete 30S subunits. Thus, while S8 binding is not absolutely required for assembly of the platform, it appears to affect significantly the 16S rRNA environment of S15 by influencing central domain organization.  相似文献   

16.
Bacterial ribosomal protein S7 initiates the folding of the 3' major domain of 16S ribosomal RNA by binding to its lower half. The X-ray structure of protein S7 from thermophilic bacteria was recently solved and found to be a modular structure, consisting of an alpha-helical domain with a beta-ribbon extension. To gain further insights into its interaction with rRNA, we cloned the S7 gene from Escherichia coli K12 into a pET expression vector and introduced 4 deletions and 12 amino acid substitutions in the protein sequence. The binding of each mutant to the lower half of the 3' major domain of 16S rRNA was assessed by filtration on nitrocellulose membranes. Deletion of the N-terminal 17 residues or deletion of the B hairpins (residues 72-89) severely decreased S7 affinity for the rRNA. Truncation of the C-terminal portion (residues 138-178), which includes part of the terminal alpha-helix, significantly affected S7 binding, whereas a shorter truncation (residues 148-178) only marginally influenced its binding. Severe effects were also observed with several strategic point mutations located throughout the protein, including Q8A and F17G in the N-terminal region, and K35Q, G54S, K113Q, and M115G in loops connecting the alpha-helices. Our results are consistent with the occurrence of several sites of contact between S7 and the 16S rRNA, in line with its role in the folding of the 3' major domain.  相似文献   

17.
Hydroxyl radical footprinting of ribosomal proteins on 16S rRNA.   总被引:11,自引:3,他引:8       下载免费PDF全文
Complexes between 16S rRNA and purified ribosomal proteins, either singly or in combination, were assembled in vitro and probed with hydroxyl radicals generated from free Fe(II)-EDTA. The broad specificity of hydroxyl radicals for attack at the ribose moiety in both single- and double-stranded contexts permitted probing of nearly all of the nucleotides in the 16S rRNA chain. Specific protection of localized regions of the RNA was observed in response to assembly of most of the ribosomal proteins. The locations of the protected regions were in good general agreement with the footprints previously reported for base-specific chemical probes, and with sites of RNA-protein crosslinking. New information was obtained about interaction of ribosomal proteins with 16S rRNA, especially with helical elements of the RNA. In some cases, 5' or 3' stagger in the protection pattern on complementary strands suggests interaction of proteins with the major or minor groove, respectively, of the RNA. These results reinforce and extend previous data on the localization of ribosomal proteins with respect to structural features of 16S rRNA, and offer many new constraints for three-dimensional modeling of the 30S ribosomal subunit.  相似文献   

18.
19.
Highly conserved sequences present at an identical position near the 3' ends of eukaryotic and prokaryotic 5S rRNAs are complementary to the 5' strand of the m2(6)A hairpin structure near the 3' ends of 18S rRNA and 16S rRNA, respectively. The extent of base-pairing and the calculated stabilities of the hybrids that can be constructed between 5S rRNAs and the small ribosomal subunit RNAs are greater than most, if not all, RNA-RNA interactions that have been implicated in protein synthesis. The existence of complementary sequences in 5S rRNA and small ribosomal subunit RNA, along with the previous observation that there is very efficient and selective hybridization in vitro between 5S and 18S rRNA, suggests that base-pairing between 5S rRNA in the large ribosomal subunit and 18S (16S) rRNA in the small ribosomal subunit might be involved in the reversible association of ribosomal subunits. Structural and functional evidence supporting this hypothesis is discussed.  相似文献   

20.
The E. coli 16 S rRNA with single-site breaks centered at position 777 or 785 was obtained by RNase H site-specific cleavage of rRNA. Spontaneous dissociation of the cleaved 16 S rRNA into fragments occurred under 'native' conditions. The reassociation of the 16 S rRNA fragments was possible only in the presence of ribosomal proteins. The combination of S4 and S16(S17) ribosomal proteins interacting mainly with the 5'-end domain of 16 S rRNA was sufficient for reassociation of the fragments. The 30 S subunits with fragmented RNA at ca. 777 region retained some poly(U)-directed protein synthetic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号