共查询到12条相似文献,搜索用时 0 毫秒
1.
The alkylating agent MMS was toxic to mouse lymphoma L5178Y cells and decreased their growth rate. A dose-dependent induction of thioguanine- and thymidine- but not ouabain-resistant variants was observed. The prolonged period for expression of thioguanine-resistant variants observed with other mutagens was also found in these studies. A comparison of MMS and EMS showed that MMS on a molar basis was approximately 10 times more toxic than EMS. With mutation, however, when evaluated at equal levels of cell killing MMS and EMS induced the same number of thymidine-resistant variants. For thioguanine-resistant variants MMS was approximately 10-fold less efficient than EMS, while for ouabain-resistance MMS, unlike EMBS, produced no variants at all. The ouabain results were further compared with positive results obtained using a modified Luria--Delbrück fluctuation test. 相似文献
2.
L5178Y mouse lymphoma cells normally appear to possess two functional thymidine kinase alleles (TK+/+). TK-deficient (TK?/?) clonal lines can be derived from these cells by treatment with EMS or other mutagens. Mezger-Freed [12] has argued that such stable phenotypic variants do not arise as the result of gene mutations but instead represent epigenetic events such as normally occur during differentiation without any permanent gene alteration. If this be so, then rare TK+/? revertants arising in TK?/? cultures should possess TK enzyme identical with one of those present in the original TK+/+ cells, since only depression of the TK gene is involved. Our studies show that this is not the case.Among the mutant TK enzymes analyzed in vitro (those from parental TK+/? lines, each derived in turn from separate TK?/? lines) differences were found in (1) solubility in saline; (2) solubility in3 M LiCl; (3) Km′s; and (4) ATP-Mg2+ requirements. These findings were incompatible with a non-mutational model for the production of these stable variants and, in conjunction with reversion-rate data, they tended to favor either direct structural gene modifications or mutations affecting the expression of adult and fetal enzymes. 相似文献
3.
Whether resistance to purine analogues 8-azaguanine (AG) and 6-thioguanine (TG) in mammalian cells is due to gene mutation or to epigenetic changes was investigated by an ethyl methanesulfonate (EMS) dose-dependent induced “resistance” to these analogues in two near-diploid (2N) and one tetraploid (4N) Chinese hamster ovary (CHO) cells. EMS produced higher cell killing in 2N than in 4N cells. In the 2N cells, EMS-induced mutations to TG (1.7 μg/ml) resistance increased approximately as a linear function of the dose from 0–400 μg/ml. However, EMS was ineffective in inducing such mutation in the 4N cells. These observations are consistent with the notion that the induced TG resistance arose as a result of mutation at the gene or chromosome level. In each cell type, both the “observed” spontaneous and the EMS-induced frequency to purine analogue resistance decreased with increasing concentration of purine analogues. However, among the “resistant” clones a high proportion of those selected at 1.2 and 3.0 μg/ml of AG, a small portion selected at 7.5 μg/ml of AG, and virtually none at 1.7 and 6.0 μg/ml of TG are capable of growth in medium containing aminopterin (10 μM). This suggests that, under less stringent selective conditions, some resistant variants were being selected through mechanisms not yet defined. 相似文献
4.
Purine analogue resistant clones have been selected from the closely related Chinese hamster lines V79A and V79S. Clones were of either spontaneous origin or induced by EMS or ultraviolet light. The majority of clones selected in 8-azaguanine showed stable cross resistance to 6-thioguanine. Clones derived from V79A and selected for 6-thioguanine resistance were cross resistant to 8-azaguanine: however a group of 6-thioguanine resistant mutants selected from V79S cells were 8-azaguanine sensitive. All clones except two were unable to grow in HAT medium. The two exceptions were 8-azaguanine resistant, showed partial sensitivity to 6-thioguanine, and also differed in other biochemical characteristics. HGPRT activity was measurable in extracts of all clones under standard conditions. In many clones, HGPRT activity increased as the hypoxanthine concentration was reduced. Whole cell uptake of [14C] hypoxanthine was low in all cases examined and was not modified by incubation in the presence of amethopterin. The heat sensitivity and electrophoretic mobility of HGPRT in extracts of some clones was compared to that in wild-type extracts. All clones tested except one, which was consistently HAT positive, showed enhanced heat sensitivity and reduced electrophoretic mobility. None of the mutants reverted spontaneously at detectable frequency but some could be induced to revert by EMS. The presence of measurable enzyme with altered properties in all clones suggests that these revertable drug resistant clones represent missense mutants. 相似文献
5.
6.
Resistance of cultured human fibroblasts and other cells to purine and pyrimidine analogues in relation to mutagenesis detection 总被引:7,自引:0,他引:7
R DeMars 《Mutation research》1974,24(3):335-364
In vitro enumeration of diploid human cell variants that are resistant to purine analogues is a possible method of detecting mutagenesis. Their incidences can be increased by the known mutagens, X-rays and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Usefulness of this method depends on the kinds of hereditary changes that confer analogue-resistance on somatic cells. If resistance usually results from changes in genetic material, in vitro studies could be useful indicators of mutagenic effects on somatic cells and germ cells in vivo. If epigenetic changes are primarily responsible for analogue-resistant variants, their enumeration might not provide information relevant to germinal mutations but would still be a useful way to detect induction of general kinds of stable phenotypic changes that could cause cancer. This article outlines hypothetical epigenetic and genetic causes of somatic cell variation and a prospective genetic analysis of human cell variants that are resistant to 8-azaguanine (AG) or 2,6-diaminopurine ( (DAP).Recent evidences and arguments favoring epigenetic origins of resistance to base-analogues are inconclusive. The often cited high rate of changes causing impermeability to BUdR in hamster cells is based on one improperly executed determination. Comparisons of rates of variation conferring BUdR-resistance on cultured haploid and diploid frog cells included diploid variants that did not behave as mutants and ignored major sources of error in estimating mutation rates. AG-resistance could result from recessive mutations in X-chromosomal genes but comparisons of rates of mutation in hamster cells of different ploidies did not provide information about the numbers of X-chromosomes in the variants. Reports that normal rodent HGPRT reappeared in hybrids of enzyme-deficient rodent cells and HGPRT-containing cells of other species or in the rodent cells alone in response to the conditions of cell hybridization did not include adequate controls for reversions in mutant genes of the rodent cells. Questions about the epigenetic and genetic origins of analogue-resistance are mostly unanswered. It remains possible that some kinds of abnormal epigenetic changes cause somatic disease. Specific methods for detecting their occurrence and responsiveness to environmental factors should be devised by focusing efforts on traits that are normally subject to epigenetic regulation. Derepression of genes on the inactive X-chromosome and of liver phenylalanine hydroxylase production are presented as possible examples of abnormal epigenetic changes that could be quantitatively studied by direct selection in vitro. 相似文献
7.
Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (referred to as the CHO/HGPRT system) can be quantitated by selection for the phenotype of resistance to 6-thioguanine (TG) under stringently defined conditions. The phenotypic expression time, that is, the time interval after mutagen treatment which is necessary befor all mutant cells are able to express the TG-resistant phenotype, has been found to be 7–9 days in this CHO/HGPRT system when the cells are subcultured every 48 h. Subculture in medium with or without hypoxanthine (HX) utilizing trypsin, ethylenediaminetetraacetic acid (EDTA), or ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) for cell removal yields identical results. When subculture at intervals greater than 48 h is employed, a slight lengthening of the expression time is observed. An alternative method to regular subculture has also been achieved by maintaining the cells in a viable, non-dividing state in serum-free medium. This procedure yields a similar time course of phenotypic expression and thus shows that continued cell division is not essential to this expression process. In addition, this observation offers methodology which can significantly reduce the investment of time and money for mutation induction determinations in this mammalian cell gene mutation assay. 相似文献
8.
Complete inhibition of growth of sensitive L5178Y mouse lymphoma cells in culture was obtained with 10(-3)M ouabain, 1.65 X 10(-3)M thymidine, 1.8 X 10(-4)M thioguanine and 10(-6)M cytosine arabinoside. The toxicity of methotrexate was dependent upon cell density and this compound was excluded from further study. The expression time before addition of the selective agent was important for detecting EMS induced resistant variants. Ouabain-resistant variants appeared immediately after treatment and were present over a broad time span. No excess thymidine- or thioguanine-resistant variants were seen initially; a peak in variant numbers was seen for excess thymidine resistance at 48-96 h and for thioguanine resistance at 144-192 h. Using induced mutation frequencies at optimum expression times, equal EMS treatments yielded substantially more variants resistant to thioguanine than to ouabain. It is suggested that this difference may have origin in possible constraints in the classes of mutants which are permissible in a vital function, maintenance of the Na+/K+ balance, when compared with a non-vital function, salvage purine biosynthesis. Some data are presented on the stability in culture of resistant variants. A limited number of observations were made following treatment in the peritoneal cavity of the mouse which were in broad agreement with the above results. 相似文献
9.
In situ analysis of trifluorothymidine-resistant (TFTr) mutants of L5178Y/TK+/- mouse lymphoma cells 总被引:3,自引:0,他引:3
TFTr mutants of L5178Y/TK+/- mouse lymphoma cells are analyzed as they appear in situ following cloning and incubation for 9-11 days in soft agar cloning medium. These TFTr mutants can be divided by colony size into sigma, small colony, and lambda, large colony, mutants. The use of a size discriminator on an automatic colony counter allows the production of histograms to evaluate the size distribution of colonies on a plate. The evaluation of these size distribution curves provides insight into the properties of sigma and lambda mutants. From these analyses several conclusions may be drawn. The sigma phenotype is preferentially associated with the TFTr subpopulation of a treated culture. The sigma phenotype is not an artifact of delayed toxicity following treatment. The frequency of quantifiable sigma mutants is not affected by agar concentrations between 0.20% and 0.45% in the cloning medium. TFTr sigma mutants are produced spontaneously and can be induced by a variety of mutagens. The decline in overall detectable mutants frequency observed for some mutagens with increasing time after treatment is due to the decline in sigma mutant frequency. The quantitation of both sigma and lambda mutants is thus useful in obtaining maximum utility of the information provided by the L5178Y/TK+/- mouse lymphoma assay. 相似文献
10.
We have investigated conditions necessary to quantify the relationship between exposure to a mutagen, ethyl methanesulfonate (EMS), and the frequency of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Maximal expression of potential mutants has been achieved by either subculturing at fewer than 5 X 10(5) cells/100-mm dish at 2-day intervals or by daily feeding of cultures. An expression period of 5 days (measure from 1 day after the initiation of treatment with the chemical mutagen) should be allowed, since at least 4 days of expression is required to reach to steady maximum of mutation frequency. It appears that there is no concentration dependence of expression time necessary to reach a plateau of mutation frequency with increasing concentrations of EMS up to 1.6 mg/ml. About 1.25 X 10(5) cells/100-mm dish or fewer should be plated for selection to avoid the loss of mutants which occurs at 1.5 X 10(5) cells/dish, presumably through cross-feeding (metabolic cooperation). The use of 6-thioguanine in hypoxanthine-free medium (supplemented with dialyzed fetal calf serum) appears to be a very stringent condition for selection. Mutation induction by EMS as a function of EMS exposure (EMS concentration X treatment time) increases linearly with concentration up to 12 h. For these treatment periods, the observed mutation frequencies for EMS are directly proportional to mutagen exposure regardless of the duration of the treatment. 相似文献
11.
As a first step in the development of a multiple-marker, mammalian cell mutagenesis assay system, we have isolated a Chinese hamster ovary (CHO) cell line that is heterozygous for both the adenine phosphoribosyltransferase (aprt) and thymidine kinase (tk) loci. Presumptive aprt+/? heterozygotes with intermediate levels of APRT activity were selected from unmutagenized CHO cell populations on the basis of resistance to low concentrations of the adenine analog, 8-azaadenine. A functional aprt+/? heterozygote with ~50% wild-type APRT activity was subsequently used to derive sublines that were also heterozygous for the tk locus. Biochemical and genetic characterization of one such subline, CHO-AT3-2, indicated that it was indeed heterozygous at both the aprt and tk loci. CHO-AT3-2 cells permitted single-step selection of mutants resistant to 8-azaadenine or 5-fluorodeoxyuridine, allowing quantitation and direct comparison of mutation induction at the autosomal aprt or tk loci, as well as in the gene involved in ouabain resistance or at the X-linked, hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus. Significant dose-dependent increases in mutation frequency were observed for all 4 genetic markers after treatment of CHO-AT3-2 cells with ethyl methanesulfonate. 相似文献
12.
0-8 h old Drosophila females carrying a reversed metacentric X chromosome and a suitably marked Y chromosome were treated or not with 0.2% caffeine and irradiated with 2000 R X-rays. In contrast with the reduction found in translocation frequency following 2000 R irradiation of the male mated with 0.2% caffeine-treated females, the frequency of interchanges in oocytes was significantly higher with caffeine as compared with controls. 相似文献