共查询到20条相似文献,搜索用时 0 毫秒
1.
NMDA receptors are a subclass of ionotropic glutamate receptors. They are trafficked and/or clustered at synapses by the post-synaptic density (PSD)-95 membrane associated guanylate kinase (MAGUK) family of scaffolding proteins that associate with NMDA receptor NR2 subunits via their C-terminal glutamate serine (aspartate/glutamate) valine motifs. We have carried out a systematic study investigating in a heterologous expression system, the association of the four major NMDA receptor subtypes with the PSD-95 family of MAGUK proteins, chapsyn-110, PSD-95, synapse associated protein (SAP) 97 and SAP102. We report that although each PSD-95 MAGUK was shown to co-immunoprecipitate with NR1/NR2A, NR1/NR2B, NR1/NR2C and NR1/NR2D receptor subtypes, they elicited differential effects with regard to the enhancement of total NR2 subunit expression which then results in an increased cell surface expression of NMDA receptor subtypes. PSD-95 and chapsyn-110 enhanced NR2A and NR2B total expression which resulted in increased NR1/NR2A and NR1/NR2B receptor cell surface expression whereas SAP97 and SAP102 had no effect on total or cell surface expression of these subtypes. PSD-95, chapsyn-110, SAP97 and SAP102 had no effect on either total NR2C and NR2D subunit expression or cell surface NR1/NR2C and NR1/NR2D expression. A comparison of PSD-95α, PSD-95β and PSD-95αC3S,C5S showed that PSD-95-enhanced cell surface expression of NR1/NR2A receptors was dependent upon the PSD-95 N-terminal C3,C5 cysteines. These observations support differential interaction of NMDA receptor subtypes with different PSD-95 MAGUK scaffolding proteins. This has implications for the stabilisation, turnover and compartmentalisation of NMDA receptor subtypes in neurones during development and in the mature brain. 相似文献
2.
Recent reports suggest an important role for protein ubiquitination in synaptic plasticity. We cloned, from the rat brain, a novel gene that encoded an ubiquitin-specific protease (USP), and termed this protein synaptic ubiquitin-specific protease (synUSP, GenBankTM Accession no. AB073880). The homologous human gene was mapped to a locus on chromosome 1p36.12. The deduced synUSP protein consisted of 1036 amino acids, and possessed an ubiquitin-like domain at the C-terminus, Cys- and His-boxes, leucine zipper motifs, and six amino acid-repeats of L/ILCPHG. The protein possessed de-ubiquitinating activity toward a model substrate, as expected from its sequence. The protein of 125 kDa was present in the rat brain; in particular, it was enriched in the post-synaptic density and the dendritic lipid raft fractions. The immunostaining of cortical neurons confirmed the post-synaptic localization. The mRNA for synUSP was localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the post-synaptic compartments. These results suggest a regulatory mechanism for the ubiquitin-related system at the post-synaptic sites. 相似文献
3.
4.
Differential modulation of NR1-NR2A and NR1-NR2B subtypes of NMDA receptor by PDZ domain-containing proteins 总被引:3,自引:0,他引:3
The PSD-95/Dlg/ZO-1 (PDZ) domain-containing proteins MALS and PSD-95 localize to post-synaptic densities and bind the COOH-termini of NR2 subunits of the NMDA receptor. The effects of MALS-2 and PSD-95 on the channel activity of NMDA receptors were compared using the Xenopus oocyte expression system. Both MALS-2 and PSD-95 increased the current response of the NR1-NR2B receptor to l-glutamate. In contrast, the current response of the NR1-NR2A receptor was increased by PSD-95 but not by MALS-2. MALS-2 had no effect either on the potentiation of NR1-NR2A or NR1-NR2B channel activity by protein kinase C, or on Src-mediated potentiation of NR1-NR2A activity, whereas PSD-95 almost completely inhibited the effects of these protein kinases. Construction of chimeras of MALS-2 and PSD-95 revealed that the first two PDZ domains and two NH(2)-terminal cysteine residues are essential for the inhibitory effects of PSD-95 on protein kinase C-mediated potentiation of NR1-NR2A and NR1-NR2B channel activity, respectively. The second of the three PDZ domains of PSD-95 was required for its inhibition of Src-mediated potentiation of NR1-NR2A activity. These results indicate that the NR1-NR2A and NR1-NR2B receptors are modulated differentially by MALS-2 and PSD-95, and that similar regulatory effects of PSD-95 on these receptors are achieved by distinct mechanisms. 相似文献
5.
Sandoval M Sandoval R Thomas U Spilker C Smalla KH Falcon R Marengo JJ Calderón R Saavedra V Heumann R Bronfman F Garner CC Gundelfinger ED Wyneken U 《Journal of neurochemistry》2007,101(6):1672-1684
Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are essential regulators of synaptic function in the adult CNS. A TrkB-mediated effect at excitatory synapses is enhancement of NMDA receptor (NMDA-R)-mediated currents. Recently, opposing effects of TrkB and the pan-neurotrophin receptor p75(NTR) on long-term synaptic depression and long-term potentiation have been reported in the hippocampus. To further study the regulation of NMDA-Rs by neurotrophin receptors in their native protein environment, we micro-transplanted rat forebrain post-synaptic densities (PSDs) into Xenopus oocytes. One-minute incubations of oocytes with BDNF led to dual effects on NMDA-R currents: either TrkB-dependent potentiation or TrkB-independent inhibition were observed. Pro-nerve growth factor, a ligand for p75(NTR) but not for TrkB, produced a reversible, dose-dependent, TrkB-independent and p75(NTR)-dependent inhibition of NMDA-Rs. Fractionation experiments showed that p75(NTR) is highly enriched in the PSD protein fraction. Immunoprecipitation and pull-down experiments further revealed that p75(NTR) is a core component of the PSD, where it interacts with the PDZ3 domain of the scaffolding protein SAP90/PSD-95. Our data provide striking evidence for a rapid inhibitory effect of p75(NTR) on NMDA-R currents that antagonizes TrkB-mediated NMDA-R potentiation. These opposing mechanisms might be present in a large proportion of forebrain synapses and may contribute importantly to synaptic plasticity. 相似文献
6.
The dendritic arbor is responsible for receiving and consolidating neuronal input. Outgrowth and morphogenesis of the arbor are complex stages of development that are poorly understood. However, recent findings have identified synaptic scaffolding proteins as novel regulators of these important events. Scaffolding proteins are enriched in the post-synaptic density where they bind and bring into close proximity neurotransmitter receptors, signaling molecules, and regulators of the actin cytoskeleton. This property is important for dendritic spine morphogenesis and maintenance in the mature neuron. Scaffolding proteins are now being described as key regulators of neurite outgrowth, dendritic development, and pattern formation in immature neurons. These proteins, which include post-synaptic-95, Shank and Densin-180, as well as many of their interacting partners, appear to regulate both the microtubule and actin cytoskeleton to influence dendrite morphology. Through a large array of protein-protein interaction domains, scaffolding proteins are able to form large macromolecular complexes that include cytoskeletal motor proteins as well as microtubule and actin regulatory molecules. Together, the new findings form a persuasive argument that scaffolding proteins deliver critical regulatory elements to sites of dendritic outgrowth and branching to modulate the formation and maintenance of the dendritic arbor. 相似文献
7.
Inmaculada M. González-González Noemí García-Tardón Cecilio Giménez Francisco Zafra 《Journal of neurochemistry》2009,110(1):264-274
The glutamate transporter GLT1 is expressed in at least two isoforms, GLT1a and GLT1b, which differ in their C termini. As GLT1 is an oligomeric protein, we have investigated whether GLT1a and GLT1b might associate as hetero-oligomers. Differential tagging (HA-GLT1a and YFP-GLT1b) revealed that these isoforms form complexes that could be immunoprecipitated when co-expressed in heterologous systems. The association of GLT1a and GLT1b was also observed in mixed primary cultures of rat brain and in the adult rat brain, where specific antibodies for GLT1a immunoprecipitated GLT1b and vice versa. Dual immunofluorescence in mixed cultures demonstrated the partial co-localization of both isoforms in neurons and in glial cells. Because GLT1b interacts with an organizer of post-synaptic densities, PSD-95, we examined the capacity of GLT1a to associate with this protein. GLT1a was immunoprecipitated from the rat brain in protein complexes that contained not only GLT1b but also PSD-95 and NMDAR. The interaction between GLT1a with PSD-95 and NMDAR was reproduced in transfected COS7 cells and it appears to be indirect as it requires the presence of GLT1b. These results indicate that the major isoform of the glutamate transporter, GLT1a, can acquire the capacity to interact with PDZ proteins through its inclusion in hetero-oligomers containing GLT1b. 相似文献
8.
It has been demonstrated that the endogenous cannabinoid receptor ligand, anandamide, and other N-acylethanolamines (NAEs), accumulate during neuronal injury in vitro, a process that may be linked to the neuroprotective effects of NAEs. The crucial step for generation of NAEs is the synthesis of the corresponding precursors, N-acylethanolamine phospholipids (NAPEs). However, it is unknown whether this key event for NAE formation is regulated differently in the context of insults causing necrotic or apoptotic neuronal death. To address this question, we monitored a range of cortical NAPE species in three infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 x 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by concussive head trauma. A marked increase of all NAPE species was observed in both hemispheres 4 and 24 h after NMDA-induced injury, with a relatively larger increase in N-stearoyl-containing NAPE species. Thus, the percentage of the anandamide precursor fell from 1.1 to 0.5 mol %. In contrast, administration of (+)MK-801 did not alter cortical NAPE levels. Concussion head trauma resulted in a similar but less pronounced upregulation of NAPE levels at both 4 and 24 h as compared to NMDA injections. Increased levels of NAPE 24 h post-trauma possibly reflect that necrosis is still ongoing at this time point. Consequently, our data suggest that excitotoxic necrotic mechanisms of neurodegeneration, as opposed to apoptotic neurodegeneration, have a profound effect on in vivo NAE precursor homeostasis. 相似文献
9.
Richards P Didszun C Campesan S Simpson A Horley B Young KW Glynn P Cain K Kyriacou CP Giorgini F Nicotera P 《Cell death and differentiation》2011,18(2):191-200
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by expansion of a polyglutamine tract in the huntingtin protein (htt) that mediates formation of intracellular protein aggregates. In the brains of HD patients and HD transgenic mice, accumulation of protein aggregates has been causally linked to lesions in axo-dendritic and synaptic compartments. Here we show that dendritic spines - sites of synaptogenesis - are lost in the proximity of htt aggregates because of functional defects in local endosomal recycling mediated by the Rab11 protein. Impaired exit from recycling endosomes (RE) and association of endocytosed protein with intracellular structures containing htt aggregates was demonstrated in cultured hippocampal neurons cells expressing a mutant htt fragment. Dendrites in hippocampal neurons became dystrophic around enlarged amphisome-like structures positive for Rab11, LC3 and mutant htt aggregates. Furthermore, Rab11 overexpression rescues neurodegeneration and dramatically extends lifespan in a Drosophila model of HD. Our findings are consistent with the model that mutant htt aggregation increases local autophagic activity, thereby sequestering Rab11 and diverting spine-forming cargo from RE into enlarged amphisomes. This mechanism may contribute to the toxicity caused by protein misfolding found in a number of neurodegenerative diseases. 相似文献
10.
Relatively large number of post-synaptic density (PSD) proteins, including Ca2+ /calmodulin-dependent protein kinase II (CaMKII), have the potential to associate with lipid rafts. We in this study demonstrate that the CaMKIIα clusters induced by ionomycin in human embryonic kidney 293 cells, as well as unclustered CaMKIIα (Du F., Saitoh F., Tian Q. B., Miyazawa S., Endo S. and Suzuki T, 2006, Biochem. Biophys. Res. Commun 347, 814–820), were associated with lipid rafts. The CaMKIIα clusters associated with lipid raft fraction became resistant to treatment with methyl-β-cyclodextrin and subsequent cold Triton X-100, which suggests the stabilization of CaMKIIα cluster-associated lipid rafts. Next, we found that PSD-95, which is also a component of lipid raft fraction and does not interact directly with CaMKII, was trapped by stable CaMKIIα cluster-containing structure. Association of PSD-95 with CaMKIIα clusters was also observed in cultured neuronal cells. These results suggest the CaMKIIα clusters associated with the lipid rafts in the cytoplasmic region play a role in the assembly and stabilization of certain PSD proteins that have the potential to associate with lipid rafts. 相似文献
11.
Hansson O Castilho RF Korhonen L Lindholm D Bates GP Brundin P 《Journal of neurochemistry》2001,78(4):694-703
Transgenic Huntington's disease (HD) mice, expressing exon 1 of the HD gene with an expanded CAG repeat, are totally resistant to striatal lesion induced by excessive NMDA receptor activation. We now show that striatal lesions induced by the mitochondrial toxin malonate are reduced by 70-80% in transgenic HD mice compared with wild-type littermate controls. This occurred in 6- and 12-week-old HD mice with 150 CAG repeats (line R6/2) and in 18-week-old, but not 6-week-old, HD mice with 115 CAG repeats (line R6/1). Therefore, we show for the first time that the resistance to neurotoxin in transgenic HD mice is dependent on both the CAG repeat length and the age of the mice. Importantly, most HD patients develop symptoms in adulthood and exhibit an inverse relationship between CAG repeat length and age of onset. Transgenic mice expressing a normal CAG repeat (18 CAG) were not resistant to malonate. Although endogenous glutamate release has been implicated in malonate-induced cell death, glutamate release from striatal synaptosomes was not decreased in HD mice. Malonate-induced striatal cell death was reduced by 50-60% in wild-type mice when they were treated with either the NMDA receptor antagonist MK-801 or the caspase inhibitor zVAD-fmk. These two compounds did not reduce lesion size in transgenic R6/1 mice. This might suggest that NMDA receptor- and caspase-mediated cell death pathways are inhibited and that the limited malonate-induced cell death still occurring in HD mice is independent of these pathways. There were no changes in striatal levels of the two anti cell death proteins Bcl-X(L) and X-linked inhibitor of apoptosis protein (XIAP), before or after the lesion in transgenic HD mice. We propose that mutant huntingtin causes a sublethal grade of metabolic stress which is CAG repeat length-dependent and results in up-regulation over time of cellular defense mechanisms against impaired energy metabolism and excitotoxicity. 相似文献
12.
Glutamate receptor overactivation induces excitotoxic neuronal death, but the contribution of glutamate receptor subtypes to this excitotoxicity is unclear. We have previously shown that excitotoxicity by NMDA receptor overactivation is associated with choline release and inhibition of phosphatidylcholine synthesis. We have now investigated whether the ability of non-NMDA ionotropic glutamate receptor subtypes to induce excitotoxicity is related to the ability to inhibit phosphatidylcholine synthesis. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-induced a concentration-dependent increase in extracellular choline and inhibited phosphatidylcholine synthesis when receptor desensitization was prevented. Kainate released choline and inhibited phosphatidylcholine synthesis by an action at AMPA receptors, because these effects of kainate were blocked by the AMPA receptor antagonist LY300164. Selective activation of kainate receptors failed to release choline, even when kainate receptor desensitization was prevented. The inhibition of phosphatidylcholine synthesis evoked by activation of non-desensitizing AMPA receptors was followed by neuronal death. In contrast, specific kainate receptor activation, which did not inhibit phosphatidylcholine synthesis, did not produce neuronal death. Choline release and inhibition of phosphatidylcholine synthesis were induced by AMPA at non-desensitizing AMPA receptors well before excitotoxicity. Furthermore, choline release by AMPA required the entry of Ca(2+) through the receptor channel. Our results show that AMPA, but not kainate, receptor overactivation induces excitotoxic cell death, and that this effect is directly related to the ability to inhibit phosphatidylcholine synthesis. Moreover, these results indicate that inhibition of phosphatidylcholine synthesis is an early event of the excitotoxic process, downstream of glutamate receptor-mediated Ca(2+) overload. 相似文献
13.
The vertebrate post-synaptic density (PSD) is a region of high molecular complexity in which dynamic protein interactions modulate receptor localization and synaptic function. Members of the membrane-associated guanylate kinase (MAGUK) family of proteins represent a major structural and functional component of the vertebrate PSD. In order to investigate the expression and significance of orthologous PSD components associated with the Aplysia sensory neuron-motor neuron synapse, we have cloned an Aplysia Dlg-MAGUK protein, which we identify as Aplysia synapse associated protein (ApSAP). As revealed by western blot, RT-PCR, and immunocytochemical analyses, ApSAP is predominantly expressed in the CNS and is located in both sensory neuron and motor neurons. The overall amino acid sequence of ApSAP is 55–61% identical to Drosophila Dlg and mammalian Dlg-MAGUK proteins, but is more highly conserved within L27, PDZ, SH3, and guanylate kinase domains. Because these conserved domains mediate salient interactions with receptors and other PSD components of the vertebrate synapse, we performed a series of GST pull-down assays using recombinant C-terminal tail proteins from various Aplysia receptors and channels containing C-terminal PDZ binding sequences. We have found that ApSAP selectively binds to an Aplysia Shaker-type channel AKv1.1, but not to (i) NMDA receptor subunit AcNR1-1, (ii) potassium channel AKv5.1, (iii) receptor tyrosine kinase ApTrkl, (iv) glutamate receptor ApGluR1/4, (v) glutamate receptor ApGluR2/3, or (vi) glutamate receptor ApGluR7. These findings provide preliminary information regarding the expression and interactions of Dlg-MAGUK proteins of the Aplysia CNS, and will inform questions aimed at a functional analysis of how interactions in a protein network such as the PSD may regulate synaptic strength. 相似文献
14.
Semaphorin 4B interacts with the post-synaptic density protein PSD-95/SAP90 and is recruited to synapses through a C-terminal PDZ-binding motif 总被引:4,自引:0,他引:4
Burkhardt C Müller M Badde A Garner CC Gundelfinger ED Püschel AW 《FEBS letters》2005,579(17):3821-3828
The semaphorins are a large family of proteins that act as guidance signals for axons and dendrites. The class 4 semaphorins are integral membrane proteins that are widely expressed throughout the nervous system. Here, we show that a subclass of these semaphorins is characterized by a PDZ-binding motif at their carboxy-terminus. This sequence mediates the interaction with the post-synaptic density protein PSD-95/SAP90. Co-expression of Sema4B with PSD-95 in COS 7 cells results in the clustering of Sema4B. Sema4B co-localizes with PSD-95 at synaptic contacts between cultured hippocampal neurons. This synaptic localization depends on the presence of the PDZ-binding motif. 相似文献
15.
O Susanto S E Stewart I Voskoboinik D Brasacchio M Hagn S Ellis S Asquith K A Sedelies P I Bird N J Waterhouse J A Trapani 《Cell death and differentiation》2013,20(9):1183-1193
Human and mouse granzyme (Gzm)B both induce target cell apoptosis in concert with pore-forming perforin (Pfp); however the mechanisms by which other Gzms induce non-apoptotic death remain controversial and poorly characterised. We used timelapse microscopy to document, quantitatively and in real time, the death of target cells exposed to primary natural killer (NK) cells from mice deficient in key Gzms. We found that in the vast majority of cases, NK cells from wild-type mice induced classic apoptosis. However, NK cells from syngeneic Gzm B-deficient mice induced a novel form of cell death characterised by slower kinetics and a pronounced, writhing, ‘worm-like'' morphology. Dying cells initially contracted but did not undergo membrane blebbing, and annexin-V staining was delayed until the onset of secondary necrosis. As it is different from any cell death process previously reported, we tentatively termed this cell death ‘athetosis''. Two independent lines of evidence showed this alternate form of death was due to Gzm A: first, cell death was revealed in the absence of Gzm B, but was completely lost when the NK cells were deficient in both Gzm A and B; second, the athetotic morphology was precisely reproduced when recombinant mouse Gzm A was delivered by an otherwise innocuous dose of recombinant Pfp. Gzm A-mediated athetosis did not require caspase activation, early mitochondrial disruption or generation of reactive oxygen species, but did require an intact actin cytoskeleton and was abolished by latrunculin B and mycalolide B. This work defines an authentic role for mouse Gzm A in granule-induced cell death by cytotoxic lymphocytes. 相似文献
16.
Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death 总被引:33,自引:0,他引:33
Cregan SP Fortin A MacLaurin JG Callaghan SM Cecconi F Yu SW Dawson TM Dawson VL Park DS Kroemer G Slack RS 《The Journal of cell biology》2002,158(3):507-517
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury. 相似文献
17.
Giordano G Sánchez-Pérez AM Montoliu C Berezney R Malyavantham K Costa LG Calvete JJ Felipo V 《Journal of neurochemistry》2005,94(3):808-818
Activation of NMDA receptors leads to activation of cAMP-dependent protein kinase (PKA). The main substrates phosphorylated by PKA following NMDA receptor activation remain unidentified. The aim of this work was to identify a major substrate phosphorylated by PKA following NMDA receptor activation in cerebellar neurones in culture, and to assess whether this phosphorylation may be involved in neuronal death induced by excessive NMDA receptor activation. The main PKA substrate following NMDA receptor activation was identified by MALDI-TOFF fingerprinting as the nuclear protein, matrin 3. PKA-mediated phosphorylation of matrin 3 is followed by its degradation. NMDA receptor activation in rat brain in vivo by ammonia injection also induced PKA-mediated matrin 3 phosphorylation and degradation in brain cell nuclei. Blocking NMDA receptors in brain in vivo with MK-801 reduced basal phosphorylation of matrin 3, suggesting that it is modulated by NMDA receptors. Inhibition of PKA with H-89 prevents NMDA-induced phosphorylation and degradation of matrin 3 as well as neuronal death. These results suggest that PKA-mediated phosphorylation of matrin 3 may serve as a rapid way of transferring information from synapses containing NMDA receptors to neuronal nuclei under physiological conditions, and may contribute to neuronal death under pathological conditions. 相似文献
18.
Xavier d'Anglemont de Tassigny† Céline Campagne† Sophie Steculorum† Vincent Prevot† 《Journal of neurochemistry》2009,109(1):214-224
Estrogens and nitric oxide (NO) exert wide-ranging effects on brain function. Recent evidence suggested that one important mechanism for the regulation of NO production may reside in the differential coupling of the calcium-activated neuronal NO synthase (nNOS) to glutamate NMDA receptor channels harboring NR2B subunits by the scaffolding protein post-synaptic density-95 (PSD-95), and that estrogens promote the formation of this ternary complex. Here, we demonstrate that 30-min estradiol-treatment triggers the production of NO by physically and functionally coupling NMDA receptors to nNOS in primary neurons of the rat preoptic region in vitro . The ability of estradiol to activate neuronal NO signaling in preoptic neurons and to promote changes in protein-protein interactions is blocked by ICI 182,780, an estrogen receptor antagonist. In addition, blockade of NMDA receptor NR2B subunit activity with ifenprodil or disruption of PSD-95 synthesis in preoptic neurons by treatment with an anti-sense oligodeoxynucleotide inhibited the estradiol-promoted stimulation of NO release in cultured preoptic neurons. Thus, estrogen receptor-mediated stimulation of the nNOS/PSD-95/NMDA receptor complex assembly is likely to be a critical component of the signaling process by which estradiol facilitates coupling of glutamatergic fluxes for NO production in neurons. 相似文献
19.
We have studied glial activation in rat cerebellar neuronal-glial cultures after inducing neuronal death using various stimuli. Cultures were exposed to 100 microm glutamate for 20 min, which induces excitotoxic neuronal death, or to potassium/serum deprivation, which induces apoptosis of granule neurons. We evaluated alterations in several parameters related to glial activation: nuclear factor-kappaB activation, nitric oxide and tumour necrosis factor-alpha production, which are associated with a pro-inflammatory response, glial proliferation and phagocytic activity. Although the two experimental models of neuronal damage resulted in the death of most neuronal cells within 24 h, differences were observed in the response of the various glial parameters evaluated. While nitric oxide production was not detected in any case, tumour necrosis factor-alpha production, nuclear factor-kappaB activation and glial proliferation were only induced in the presence of excitotoxic neuronal death. However, phagocytosis was induced in both cases, although earlier in the case of apoptotic neuronal death. These results show that glial cells respond to excitotoxic neuronal death with an inflammatory response associated with proliferation and phagocytosis. In contrast, whilst glial cells do not produce pro-inflammatory molecules in the presence of apoptotic neuronal death, phagocytic activity is rapidly induced. 相似文献
20.
Ischemia results in increased phosphorylation of NMDA receptors. To investigate the possible role of lipid rafts in this increase, lipid rafts and post-synaptic densities (PSDs) were isolated by the extraction of rat brain synaptosomes with Triton X-100 followed by sucrose density gradient centrifugation. Lipid rafts accounted for the majority of PSD-95, whereas SAP102 was predominantly located in PSDs. Between 50 and 60% of NMDA receptors were associated with lipid rafts. Greater than 85-90% of Src and Fyn were present in lipid rafts, whereas Pyk2 was mainly associated with PSDs. Lipid rafts and PSDs were isolated from animals subjected to 15 min of global ischemia followed by 6 h of recovery. Ischemia did not affect the yield, density, flotillin-1 or cholesterol content of lipid rafts. Following ischemia, the phosphorylation of NR1 by protein kinase C and tyrosine phosphorylation of NR2A and NR2B was increased in both lipid rafts and PSDs, with a greater increase in tyrosine phosphorylation occurring in the raft fraction. Following ischemia, NR1, NR2A and NR2B levels were elevated in PSDs and reduced in lipid rafts. The findings are consistent with a model involving close interaction between lipid rafts and PSDs and a role for lipid rafts in ischemia-induced signaling pathways. 相似文献