首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
Debeljuk L  Lasaga M 《Peptides》2006,27(11):3007-3019
Tachykinins are present in the pituitary gland and in brain areas involved in the control of the secretion of pituitary hormones. Tachykinins have been demonstrated to stimulate prolactin release acting directly on the anterior pituitary gland. These peptides have also been revealed to be able to act at the hypothalamic level, interacting with neurotransmitters and neuropeptides that have the potential to affect prolactin secretion. Tachykinins seem to act by stimulating or inhibiting the release of the factors that affect prolactin secretion. Among them, tachykinins have been demonstrated to stimulate oxytocin and vasopressin release, which in turn results in prolactin release. Tachykinins also potentiated the response to vasoactive intestinal peptide (VIP) and reinforced the action of glutamate, which in turn result in prolactin release. They have also been shown to interact with serotonin, a neurotransmitter involved in the control of prolactin secretion. In addition, tachykinins have been shown to inhibit GABA release, a neurotransmitter with prolactin-release inhibiting effect. This inhibition may result in an increased prolactin secretion by removal of the GABA inhibition. On the other hand, tachykinins have also been shown to stimulate dopamine release by the hypothalamus, an action that results in an inhibition of prolactin release. Dopamine is a well known inhibitor of prolactin secretion. In conclusion, although tachykinins have been shown to have a predominantly stimulatory effect on prolactin secretion, especially at the pituitary level, under some circumstances they may also exert an inhibitory influence on prolactin release, by stimulating dopamine release at the hypothalamic level.  相似文献   

2.
Aquous extracts of brewery draff injected intravenously into ewes and cows induced prolactin and growth hormone (GH) secretion. The same draff added to the feed of cows appeared to be unable to significantly stimulate the blood level of prolactin and GH. In these experimental conditions, milk production was not enhanced by draff. Pure beta-glucan extracted from barley also stimulated hormone secretion when administered by the intravenous route. Barley, bier and draff therefore contain a beta-glucan-like factor which stimulates lactogenic hormone secretion. The amount present in draff is probably unable to cause an increase in hormones when administered orally. Hence, the well-established stimulatory effect of draff on milk production results from their nutritive value rather than from their ability of modulating the endocrine system.  相似文献   

3.
Dopaminergic drugs inhibit prolactin and stimulate GH secretion. On the contrary antidopaminergic drugs stimulate prolactin and decrease hypoglycemia-induced GH secretion. According to the hypothesis that Cimetidine, an H2-receptor antagonist, decreases hypothalamic dopamine secretion, it was evaluated GH response to hypoglycemia after this drug. It was demonstrated that Cimetidine decreases hypoglycemia-induced GH secretion.  相似文献   

4.
Mammary gland fragments were incubated in the presence of prolactin and arachidonic acid which stimulate casein secretion. The effects of these stimuli in the presence of agents that influence arachidonic acid metabolism were investigated. Chloroquine, a blocker of phospholipase A2 activity, decreased prolactin but not arachidonic acid stimulation of casein secretion. Phospholipase A2 markedly stimulated casein secretion. Nordihydroguaiaretic acid (NDGA), an antioxidant that inhibits lipoxygenase, blocked the stimulating effect of prolactin and arachidonic acid. Ultrastructural studies indicated that phospholipase A2-induced stimulation of secretion was comparable to that of prolactin but that arachidonic acid-induced stimulation did not involve the same Golgi membrane modifications. These studies suggest that prolactin and phospholipase A2 stimulate secretion by a common way, and that arachidonic acid interferes with secretion by metabolic products of the lipoxygenase pathway.  相似文献   

5.
Prolactin is an important regulator of intestinal calcium transport   总被引:3,自引:0,他引:3  
Prolactin has been shown to stimulate intestinal calcium absorption, increase bone turnover, and reduce renal calcium excretion. The small intestine, which is the sole organ supplying new calcium to the body, intensely expresses mRNAs and proteins of prolactin receptors, especially in the duodenum and jejunum, indicating the intestine as a target tissue of prolactin. A number of investigations show that prolactin is able to stimulate the intestinal calcium transport both in vitro and in vivo, whereas bromocriptine, which inhibits pituitary prolactin secretion, antagonizes its actions. In female rats, acute and long-term exposure to high prolactin levels significantly enhances the (i) transcellular active, (ii) solvent drag-induced, and (iii) passive calcium transport occurring in the small intestine. These effects are seen not only in pregnant and lactating animals, but are also observed in non-pregnant and non-lactating animals. Interestingly, young animals are more responsive to prolactin than adults. Prolactin-enhanced calcium absorption gradually diminishes with age, thus suggesting it has an age-dependent mode of action. Although prolactin's effects on calcium absorption are not directly vitamin D-dependent; a certain level of circulating vitamin D may be required for the basal expression of genes related to calcium transport. The aforementioned body of evidence supports the hypothesis that prolactin acts as a regulator of calcium homeostasis by controlling the intestinal calcium absorption. Cellular and molecular signal transductions of prolactin in the enterocytes are largely unknown, however, and still require investigation.  相似文献   

6.
7.
IL-23 has been implicated in the pathogenesis of several tissue-specific autoimmune diseases. Currently, celiac disease (CD) is the only autoimmune disease in which both the major genetic (95% HLA-DQ2(+)) and etiologic factors (dietary glutens) for susceptibility are known. We demonstrate that wheat gliadin induces significantly greater production of IL-23, IL-1beta, and TNF-alpha in PBMC from CD patients compared with HLA-DQ2(+) healthy controls, strongly advocating a role for IL-23 in the pathogenesis of CD. Moreover, IL-1beta alone triggered IL-23 secretion and the IL-1R antagonist inhibited this response in PBMC and purified monocytes. This sequence of events was replicated by beta-glucan, another substance known to induce IL-23 production. Our results suggest that gliadin and beta-glucan stimulate IL-23 secretion through induction of the IL-1 signaling pathway and reveal for the first time that the IL-1 system regulates IL-23 production. These findings may provide therapeutic targets for this disease and other inflammatory conditions mediated by IL-23.  相似文献   

8.
Involvement of the hypothalamus in opiate-stimulated prolactin secretion   总被引:2,自引:0,他引:2  
Administration of opiate agonists to rats is known to elevate plasma prolactin, an effect which is antagonised by the opiate antagonist naloxone. However, this appears not to be a result of a direct action at the pituitary gland. We report here that opiate agonists stimulate prolactin secretion from isolated adenohypophysial cells when they are coincubated with hypothalamic fragments. Both morphine and Met-enkephalin stimulated prolactin secretion by 1.84 fold and 1.50 fold respectively, and this was antagonised by naloxone. These findings support the hypothesis that one site of action of opioid compounds on pituitary hormone secretion is at the level of hypothalamus.  相似文献   

9.
10.
Direct stimulation of pituitary prolactin release by glutamate   总被引:4,自引:0,他引:4  
I S Login 《Life sciences》1990,47(24):2269-2275
The ability of glutamate and other excitatory amino acids to stimulate prolactin secretion when administered to adult animals is hypothesized to depend on a central site of action in the brain, but there are no data to support this position. An alternative hypothesis was tested that glutamate would stimulate prolactin release when applied directly to primary cultures of dispersed adult female rat anterior pituitary cells studied in a perifusion protocol. Glutamate increased the rate of prolactin release within two minutes in a self-limited manner. Glutamate-stimulated prolactin release was augmented about 4-fold by elimination of magnesium from the perfusate and was associated with stimulation of pituitary calcium flux. Ketamine and MK-801 both reduced the basal rate of prolactin release and abolished the effects of glutamate. Pituitary cells of 10-day-old rats responded similarly to glutamate. Exposure to glutamate did not influence subsequent responses to physiological hypothalamic secretagogues, thus the likelihood of toxicity was minimized. These results suggest that the N-methyl-D-aspartate (NMDA) subclass of the glutamate receptor complex is involved. Prolactin secretion may be regulated physiologically through a functional glutamate receptor on pituitary cells.  相似文献   

11.
Intraventricular injections of α-neo-endorphin, β-neo-endorphin and dynorphins (dynorphin[1–13], dynorphin[1–17], dynorphin[1–8]) resulted in an increase in plasma prolactin levels in urethane-anesthetized rats. Dynorphin [1–13] was the most potent to stimulate prolactin release among these opioid peptides. Plasma prolactin responses to these stimuli were blunted by naloxone, an opiate antagonist. In invitro studies, prolactin release from perfused pituitary cells was stimulated by α-neo-endorphin, and the effect was blunted by naloxone, whereas neither β-neo-endorphin nor dynorphin[1–13] affected prolactin release. These results suggest that newly identified “big” Leu-enkephalins in the brain stimulate prolactin secretion in the rat and that α-neo-endorphin has a possible direct action on the pituitary.  相似文献   

12.
The abilities of sulpiride, metoclopramide, clozapine, loxapine, chlorpromazine, thioridazine, fluphenazine, haloperidol, (+)-butaclamol and RMI 81,582 to displace 3H-spiroperidol from rat pituitary and striatal membranes in vitro were compared to their abilities to stimulate rat prolactin secretion in vivo. There was a significant correlation between the abilities of clozapine, chlorpromazine, thioridazine, fluphenazine, RMI 81,582, haloperidol and (+)-butaclamol to bind to pituitary and striatal spiroperidol binding sites and to stimulate rat prolactin secretion. Loxapine was somewhat more potent and sulpiride and metoclopramide were markedly more potent in their abilities to stimulate prolactin secretion than would be predicted on the basis of their abilities to bind to pituitary dopamine receptors as measured by antagonism of 3H-spiroperidol binding. The abilities of metoclopramide and sulpiride to increase prolactin secretion and to produce anti-psychotic and extrapyramidal effects may be mediated by action at dopamine receptors which differ from those at which classical neuroleptics act, and they may also be mediated by non-dopaminergic mechanisms. Potency as inhibitors of 3H-neuroleptic binding in the rat pituitary or striatum appears to have heretofore unappreciated limitations to predict physiological functions such as prolactin stimulation and anti-psychotic activity.  相似文献   

13.
Control of prolactin secretion in mammals   总被引:1,自引:0,他引:1  
Evidence describing the neuroendocrine regulation of prolactin secretion in mammals is reviewed, with focus on catecholamines, serotonin, and polypeptides. Dopamine may be a physiological prolactin inhibiting factor (PIF), while norepinephrine and possibly epinephrine regulate prolactin release at the level of the hypothalamus. Serotonin may participate in the regulation of prolactin secretion by stimulating the release of prolactin releasing factor (PRF). The identity of PRF is not known, but two polypeptides--thyrotropin releasing hormone and vasoactive intestinal polypeptide--can act directly on the adenohypophysis to stimulate prolactin release.  相似文献   

14.
Cadmium (Cd) is a heavy metal of considerable occupational and environmental concern affecting wildlife and human health. Recent studies indicate that Cd, like other heavy metals, can mimic effects of 17β-estradiol (E2) involving E2 receptor (ER) activation. Lactotrophs, the most abundant cell type in anterior pituitary gland, are the main target of E2, which stimulates cell proliferation and increases prolactin secretion through ERα. The aim of this work was to examine whether Cd at nanomolar concentrations can induce cell proliferation and prolactin release in anterior pituitary cells in culture and whether these effects are mediated through ERs. Here we show that 10 nM Cd was able to stimulate lactotroph proliferation in anterior pituitary cell cultures from female Wistar rats and also in GH3 lactosomatotroph cell line. Proliferation of somatotrophs and gonadotrophs were not affected by Cd exposure. Cd promoted cell cycle progression by increasing cyclins D1, D3 and c-fos expression. Cd enhanced prolactin synthesis and secretion. Cd E2-like effects were blocked by the pure ERs antagonist ICI 182,780 supporting that Cd acts through ERs. Further, both Cd and E2 augmented full-length ERαexpression and its 46 kDa-splicing variant. In addition, when co-incubated Cd was shown to interact with E2 by inducing ERα mRNA expression which indicates an additive effect between them. This study shows for the first time that Cd at nanomolar concentration displays xenoestrogenic activities by inducing cell growth and stimulating prolactin secretion from anterior pituitary cells in an ERs-dependent manner. Cd acting as a potent xenoestrogen can play a key role in the aetiology of different pathologies of the anterior pituitary and in estrogen-responsive tissues which represent considerable risk to human health.  相似文献   

15.
Trazodone was tested for its ability to elevate serum prolactin levels in mature female rats. When the drug was administered acutely to female rats at doses up to 80 mg/kg ip, it induced a clear rise in serum prolactin levels, with a minimum effective dose of 20 mg/kg; blood trazodone levels at these doses were between 1.6–2.4 μg/ml. However, trazodone could not be considered to be a potent stimulator of prolactin secretion, since the injection of haloperidol at 2 mg/kg elevated serum prolactin to values twice those seen in animals receiving the 80 mg/kg dose of trazodone. When trazodone was administered chronically in the diet for two or four weeks, at an average daily dose of 80 mg/kg, serum trazodone levels were found to be 100–200 ng/ml when measured at each stage of the estrous cycle. Serum prolactin levels in trazodone-treated animals, however, did not differ from those in control rats. Moreover, drug-treated animals showed normal proestrus surges in serum prolactin. The results of these studies thus indicate that acutely, at very high doses, trazodone probably can stimulate prolactin secretion modestly in female rats. However, when consumed chronically at 80 mg/kg/day, the drug has no effects on serum prolactin levels. Therefore, if trazodone stimulates prolactin secretion by altering neurotransmission across dopamine and/or serotonin synapses in brain, it is probably not potent in these actions, at least as concerns those dopamine and serotonin neurons that influence the secretion of prolactin.  相似文献   

16.
Neuromedin U (NMU) has a precursor that contains one additional peptide consisting of 33 or 36 amino acid residues. Recently, we identified this second peptide from rat brain and designated it neuromedin U precursor-related peptide (NURP), showing it to stimulate prolactin release from the pituitary when injected via the intracerebroventricular (icv) route. Here, we examined whether NMU, like NURP, also stimulates prolactin release. Unlike NURP, icv injection of NMU significantly decreased the secretion of prolactin from the pituitary. This suppression of prolactin release by NMU was observed in hyper-prolactin states such as lactation, stress, pseudopregnancy, domperidone (dopamine antagonist) administration, and icv injection of NURP. Immunohistochemical analysis revealed that icv injection of NMU induced cFos expression in dopaminergic neurons of the arcuate nucleus, but not the substantia nigra. Mice with double knockout of NMU and neuromedin S (NMS), the latter also binding to NMU receptors, showed a significant increase of the plasma prolactin level after domperidone treatment relative to wild-type mice. These results suggest that NMU and NURP may play important reciprocal roles in physiological prolactin secretion.  相似文献   

17.
18.
Beta-glucan was recently shown to have the ability to enhance and stimulate the immune system in humans, but little is known about its the anti-inflammatory effects. We investigated the effect of beta-glucan on the production of tumor necrosis factor-alpha (TNF-alpha), a major pro-inflammatory mediator, in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. beta-Glucan decreased the production and expression of TNF-alpha. In addition, it blocked LPS-stimulated activation of nuclear factor kappa B (NF-kappaB). Hence beta-glucan might suppress LPS-stimulated TNF-alpha production by inhibiting NF-kappaB in BV2 microglial cells.  相似文献   

19.
Since cholecystokinin produced important effects on prolactin secretion following its intraventricular injection in ovariectomized rats, we have evaluated the effects of the cholecystokinin antagonist, proglumide, to assess the physiologic significance of CCK in the control of prolactin release. Conscious rats of either sex were used following implantation of third ventricular and/or intravenous cannulae for the administration of proglumide. Blood samples were drawn from conscious animals at various times after injection of the compound. Intraventricular injection of 1 or 10 micrograms of proglumide produced a dramatic decline in plasma prolactin levels in either castrate or intact male rats. Similar results were found following the intravenous injection of 10 or 100 micrograms of the drug. These results contrasted sharply with the findings in ovariectomized females in which the intraventricular injection of the same two doses of proglumide used in males produced a dose-related elevation of prolactin which was opposite to the delayed lowering of prolactin following the intravenous injection of the same doses of the compound used in males. These results indicate that proglumide can lower prolactin in male rats and suggests a physiologically significant role of CCK in the control of prolactin secretion in the male. There appears to be a sex difference in the response since the results contrasted sharply in ovariectomized female rats. The results in the females are puzzling and it is apparent that further studies are needed to determine whether or not CCK has a physiologically significant role to play in prolactin secretion in the female. Since previous results have shown that CCK has no effect on the release of prolactin by the pituitary directly these interactions are presumably taking place in the hypothalamus.  相似文献   

20.
H Y Meltzer  R So 《Life sciences》1979,25(6):531-535
The ability of morphine, leu-enkephalin and β-endorphin to antagonize the binding of 3H-spiroperidol to bovine anterior pituitary membranes was studied. All three drugs were virtually inactive despite their ability to stimulate prolactin secretion invivo and the reported ability of morphine to antagonize the inhibitory effect of dopamine on prolactin release from rat hemi-pituitaries. These results suggest that opiates do not produce their direct effect on prolactin secreation at the pituitary level through an effect on the 3H-spiroperidol binding site. The opiates may antagonize the effect of dopamine at a component of the dopamine receptor which is independent of the 3H-spiroperidol binding site, or the opiates may stimulate prolactin secretion by an effect on the lactotrophes which is independent of dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号