首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Drosophila DLG (Discs Large Tumor Suppresser Protein) is a component of septate junctions, and disruption of its gene leads to over growth of imaginal discs. Homologs of Drosophila DLG recently isolated from mammalian tissue have been classified as members of the MAGUK (Membrane Associated GUanylate Kinase) superfamily of proteins. Using a modified RT-PCR method applied to rat tissues, we have isolated cDNA clones encoding a novel MAGUK family member that we have named rDLG6. Immunoblot and immunohistochemical analyses revealed that rDLG6 protein is predominantly expressed in brain. GST pull-down assays showed that the PDZ domain of rDLG6 protein binds to the C-terminus of the AMPA (alpha-Amino-3-hydroxy-5-Methyl-isoxazole-4-Propionic Acid) receptor GluR2 subunit.  相似文献   

3.
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.  相似文献   

4.
Human hepatoma up-regulated protein (HURP), a cell-cycle regulator, is found consistently overexpressed in human hepatocellular carcinoma. At present, the function of HURP in cell-cycle regulation and carcinogenesis remains unclear. In database mining, we have identified a mars gene in Drosophila, which encodes a protein with a high similarity to HURP in its guanylate kinase-associated protein (GKAP) motif. Overexpression but not down-regulation of mars in eye discs resulted in a higher mitotic index along with a high frequency of mitotic defects, including misalignment of chromosomes and mispositioned centrosomes, at the second mitotic wave (SMW). The consequence of mitotic defects impairs cell-cycle progression, and causes cell death posterior to the furrow. Immunocytochemical studies also have indicated that the expression of Mars is cell cycle regulated, and that its subcellular localization is dynamically changed during cell-cycle progression. Furthermore, we also demonstrated that the first 198 amino acids at the N-terminus of Mars are responsible for the degradation of Mars in non-mitotic cells. Together, we report the use Drosophila eye as a model system to characterize the function of the mars gene in cell-cycle regulation.  相似文献   

5.
Membrane-associated guanylate kinase (MAGUK) proteins are cell-cell contact organizing molecules that mediate targeting, clustering and anchoring of proteins at synapses and other cell junctions. MAGUK proteins may contain multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GuK) domains. In this study, we performed a detailed analysis of the expression pattern of MPP4, a recently described member of the MAGUK protein family. We confirmed that this gene is highly expressed in retina, and demonstrate that it is also present, at lower levels, in brain. We identified a new retina specific isoform encoding a predicted protein lacking 71 amino acids. This protein region contains a newly identified L27 domain, another module playing a role in protein-protein interaction. By RNA in situ hybridization, Mpp4 expression was found to be localized to photoreceptor cells in postnatal retina. The MPP4 gene is localized to chromosome 2, in band 2q31-33, where a locus for autosomal recessive retinitis pigmentosa (RP26) has been mapped. Mutation analysis of the entire open reading frame of the MPP4 gene in a RP26 family revealed no pathologic mutations. In addition, we did not identify mutations in a panel of 300 unrelated patients with retinitis pigmentosa.  相似文献   

6.
A family of anchoring proteins named MAGUK (for membrane associated guanylate kinase) has emerged as a key element in the organization of protein complexes in specialized membrane regions. These proteins are characterized by the presence of multipe protein-protein interaction domains including PDZ and SH3 domains. The MAGUK family comprises the post-synaptic density 95 (PSD-95) protein and closely related molecules such as chapsyn-110, synapse-associated protein 102 (SAP-102), and SAP-97. These are located either on the pre- and/or post-synaptic sides of synapses or at cell-cell adhesion sites of epithelial cells. MAGUK proteins interact with glutamate receptors and various ionic channels. For instance, an interaction has been reported between the first two PDZ domains of MAGUK proteins and several channels via a consensus sequence Thr/Ser-X-Val/Leu usually located at their carboxy terminus. The role of these anchoring proteins in channel function is not fully understood. MAGUK proteins enhance the current density by increasing the number of functional channels to the sarcolemma. They can also facilitate signaling between channels and several enzymes or G protein-dependent signaling pathways. In the heart also, MAGUK proteins are abundantly expressed and they interact with various channels including Shaker Kv1.5 and connexins.  相似文献   

7.
c-Src is a non-receptor tyrosine kinase involved in regulating cell proliferation, cell migration and cell invasion and is tightly controlled by reversible phosphorylation on regulatory sites and through protein-protein interactions. The interaction of c-Src with PDZ proteins was recently identified as novel mechanism to restrict c-Src function. The objective of this study was to identify and characterise PDZ proteins that interact with c-Src to control its activity. By PDZ domain array screen, we identified the interaction of c-Src with the PDZ protein Membrane Protein Palmitoylated 2 (MPP2), a member of the Membrane-Associated Guanylate Kinase (MAGUK) family, to which also the Discs large (Dlg) tumour suppressor protein belongs. The function of MPP2 has not been established and the functional significance of the MPP2 c-Src interaction is not known. We found that in non-transformed breast epithelial MCF-10A cells, endogenous MPP2 associated with the cytoskeleton in filamentous structures, which partially co-localised with microtubules and c-Src. MPP2 and c-Src interacted in cells, where c-Src kinase activity promoted increased interaction of c-Src with MPP2. We furthermore found that MPP2 was able to negatively regulate c-Src kinase activity in cells, suggesting that the functional significance of the MPP2-c-Src interaction is to restrict Src activity. Consequently, the c-Src-dependent disorganisation of the cortical actin cytoskeleton of epithelial cells expressing c-Src was suppressed by MPP2. In conclusion we demonstrate here that MPP2 interacts with c-Src in cells to control c-Src activity and morphological function.  相似文献   

8.
Membrane-associated guanylate kinase homologues (MAGUKs) are generally found under the plasma membrane of cell-cell contact sites and function as scaffolding proteins by linking cytoskeletal and signaling molecules to transmembrane receptors. The correct targeting of MAGUKs is essential for their receptor-clustering function; however, the molecular mechanism of their intracellular transport is unknown. Here, we show that the guanylate kinase-like domain of human discs large protein binds directly within the amino acids 607-831 of the stalk domain of GAKIN, a kinesin-like protein of broad distribution. The primary structure of the binding segment, termed MAGUK binding stalk domain, is conserved in Drosophila kinesin-73 and some other motor and non-motor proteins. This stalk segment is not found in GKAP, a synaptic protein that interacts with the guanylate kinase-like domain, and unlike GKAP, the binding of GAKIN is not regulated by the intramolecular interactions within the discs large protein. The recombinant motor domain of GAKIN is an active microtubule-stimulated ATPase with k(cat) = 45 s(-1), K(0.5 (MT)) = 0.1 microm. Overexpression of green fluorescent protein-fused GAKIN in Madin-Darby canine kidney epithelial cells induced long projections with both GAKIN and endogenous discs large accumulating at the tip of these projections. Importantly, the accumulation of endogenous discs large was eliminated when a mutant GAKIN lacking its motor domain was overexpressed under similar conditions. Taken together, our results indicate that discs large is a cargo molecule of GAKIN and suggest a mechanism for intracellular trafficking of MAGUK-laden vesicles to specialized membrane sites in mammalian cells.  相似文献   

9.
Polarized epithelial cells play critical roles during early embryonic development and organogenesis. Multi-domain scaffolding proteins belonging to the membrane associated guanylate kinase (MAGUK) family are commonly found at the plasma membrane of polarized epithelial cells. Genetic studies in Drosophila melanogaster and Caenorhabditis elegans have revealed that MAGUK proteins regulate various aspects of the polarized epithelial phenotype, including cell junction assembly, targeting of proteins to the plasma membrane and the organisation of polarized signalling complexes. This review will focus on the genetic studies that have contributed to our understanding of the MAGUK family members, Dlg and Lin-2/CASK, in controlling these processes. In addition, our recent genetic analysis of mouse Dlg, in combination with genetic and biochemical studies of Lin-2/CASK by others suggests a model placing Dlg and Lin-2/CASK within the same developmental pathway.  相似文献   

10.
Berger S  Bulgakova NA  Grawe F  Johnson K  Knust E 《Genetics》2007,176(4):2189-2200
Drosophila Stardust, a membrane-associated guanylate kinase (MAGUK), recruits the transmembrane protein Crumbs and the cytoplasmic proteins DPATJ and DLin-7 into an apically localized protein scaffold. This evolutionarily conserved complex is required for epithelial cell polarity in Drosophila embryos and mammalian cells in culture. In addition, mutations in Drosophila crumbs and DPATJ impair morphogenesis of photoreceptor cells (PRCs) and result in light-dependent retinal degeneration. Here we show that stardust is a genetically complex locus. While all alleles tested perturb epithelial cell polarity in the embryo, only a subset of them affects morphogenesis of PRCs or induces light-dependent retinal degeneration. Alleles retaining particular postembryonic functions still express some Stardust protein in pupal and/or adult eyes. The phenotypic complexity is reflected by the expression of distinct splice variants at different developmental stages. All proteins expressed in the retina contain the PSD95, Discs Large, ZO-1 (PDZ), Src homology 3 (SH3), and guanylate kinase (GUK) domain, but lack a large region in the N terminus encoded by one exon. These results suggest that Stardust-based protein scaffolds are dynamic, which is not only mediated by multiple interaction partners, but in addition by various forms of the Stardust protein itself.  相似文献   

11.
The molecular mechanisms underlying the organization of ion channels and signaling molecules at the synaptic junction are largely unknown. Recently, members of the PSD-95/SAP90 family of synaptic MAGUK (membrane-associated guanylate kinase) proteins have been shown to interact, via their NH2-terminal PDZ domains, with certain ion channels (NMDA receptors and K+ channels), thereby promoting the clustering of these proteins. Although the function of the NH2-terminal PDZ domains is relatively well characterized, the function of the Src homology 3 (SH3) domain and the guanylate kinase-like (GK) domain in the COOH-terminal half of PSD-95 has remained obscure. We now report the isolation of a novel synaptic protein, termed GKAP for guanylate kinase-associated protein, that binds directly to the GK domain of the four known members of the mammalian PSD-95 family. GKAP shows a unique domain structure and appears to be a major constituent of the postsynaptic density. GKAP colocalizes and coimmunoprecipitates with PSD-95 in vivo, and coclusters with PSD-95 and K+ channels/ NMDA receptors in heterologous cells. Given their apparent lack of guanylate kinase enzymatic activity, the fact that the GK domain can act as a site for protein– protein interaction has implications for the function of diverse GK-containing proteins (such as p55, ZO-1, and LIN-2/CASK).  相似文献   

12.
Hafer N  Xu S  Bhat KM  Schedl P 《Genetics》2011,189(3):907-921
Cytoplasmic polyadenylation element binding (CPEB) proteins bind mRNAs to regulate their localization and translation. While the first CPEBs discovered were germline specific, subsequent studies indicate that CPEBs also function in many somatic tissues including the nervous system. Drosophila has two CPEB family members. One of these, orb, plays a key role in the establishment of polarity axes in the developing egg and early embryo, but has no known somatic functions or expression outside of the germline. Here we characterize the other Drosophila CPEB, orb2. Unlike orb, orb2 mRNA and protein are found throughout development in many different somatic tissues. While orb2 mRNA and protein of maternal origin are distributed uniformly in early embryos, this pattern changes as development proceeds and by midembryogenesis the highest levels are found in the CNS and PNS. In the embryonic CNS, Orb2 appears to be concentrated in cell bodies and mostly absent from the longitudinal and commissural axon tracts. In contrast, in the adult brain, the protein is seen in axonal and dendritic terminals. Lethal effects are observed for both RNAi knockdowns and orb2 mutant alleles while surviving adults display locomotion and behavioral defects. We also show that orb2 funtions in asymmetric division of stem cells and precursor cells during the development of the embryonic nervous system and mesoderm.  相似文献   

13.
14.
Zhu J  Shang Y  Xia C  Wang W  Wen W  Zhang M 《The EMBO journal》2011,30(24):4986-4997
Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.  相似文献   

15.
Synaptopathies: diseases of the synaptome   总被引:1,自引:0,他引:1  
The human synapse proteome is a highly complex collection of proteins that is disrupted by hundreds of gene mutations causing over 100 brain diseases. These synaptic diseases, or synaptopathies, cause major psychiatric, neurological and childhood developmental disorders through mendelian and complex genetic mechanisms. The human postsynaptic proteome and its core signaling complexes built by the assembly of receptors and enzymes around Membrane Associated Guanylate Kinase (MAGUK) scaffold proteins are a paradigm for systematic analysis of synaptic diseases. In humans, the MAGUK Associated Signaling Complexes are mutated in Autism, Schizophrenia, Intellectual Disability and many other diseases, and mice carrying orthologous mutations show relevant cognitive, social, motoric and other phenotypes. Diseases with similar phenotypes and symptom spectrums arise from disruption of complexes and interacting proteins within the synapse proteome. Classifying synaptic disease phenotypes with genetic and proteome data provides a new brain disease classification system based on molecular etiology and pathogenesis.  相似文献   

16.
Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus   总被引:2,自引:0,他引:2  
Special cytoplasm, called germ plasm, that is essential for the differentiation of germ cells is localized in a particular region of Caenorhabditis elegans, Drosophila and Xenopus eggs. The mode of founder cell formation of germline, the origin and behavior of the germline granules, and the molecules localized in germline cells are compared in these organisms. The common characteristics of the organisms are mainly as follows. First, the founder cells of germline are established before the intiation of gastrulation. Second, the germline granules or their derivatives are always present in germline cells or germ cells throughout the life cycle in embryos, larvae, and adults. Lastly, among the proteins localized in the germ plasm, only Vasa protein or its homolog is detected in the germline cells or germ cells throughout the life cycle. As the protein of vasa homolog has been reported to be also localized in the germline-specific structure or nuage in some of the organisms without the germ plasm, the possibility that the mechanism for differentiation of primordial germ cells is basically common in all organisms with or without the germ plasm is discussed.  相似文献   

17.
The Src family protein tyrosine kinases (SFKs) are crucial regulators of cellular morphology. In Drosophila, Src64 controls complex morphological events that occur during oogenesis. Recent studies have identified key Src64-dependent mechanisms that regulate actin cytoskeletal dynamics during the growth of actin-rich ring canals, which act as intercellular bridges between germ cells. By contrast, the molecular mechanisms that regulate Src64 activity levels and potential roles for Src64 in additional morphological events in the ovary have not been defined. In this report, we demonstrate that regulation of Src64 by Drosophila C-terminal-Src Kinase (Csk) contributes to the packaging of germline cysts by overlying somatic follicle cells during egg chamber formation. These results uncover novel roles for both Csk and Src64 in a dynamic event that involves adhesion, communication between cell types and control of cell motility. Strikingly, Src64 and Csk function in the germline to control packaging, not in migrating follicle cells, suggesting novel functions for this signaling cassette in regulating dynamic adhesion. In contrast to the role played by Csk in the regulation of Src64 activity during packaging, Csk is dispensable for ring canal growth control, indicating that distinct mechanisms control Src64 activity during different morphological events.  相似文献   

18.
19.
R Hishida  T Ishihara  K Kondo    I Katsura 《The EMBO journal》1996,15(16):4111-4122
Proteins of the tolloid/bone morphogenetic protein (BMP)-1 family play important roles in the differentiation of cell fates. Among those proteins are BMP-1, which plays a role in cartilage and bone formation in mammals, the TOLLOID protein, which is required for the establishment of the dorsoventral axis of Drosophila embryos and BP10/SpAN, which are thought to act in the morphogenesis of sea urchins. These proteins have some properties in common. First, they contain the astacin metalloprotease domain, the CUB domain and the epidermal growth factor-like domain. Second, they are expressed in embryos at stages expected for their role in cell differentiation. Third, at least BMP-1 and TOLLOID are thought to interact with proteins of the transforming growth factor-beta family. We report that the hch-1 gene of the nematode Caenorhabditis elegans encodes a tolloid/BMP-1 family protein. The protein has the characteristic domains common to the tolloid/ BMP-1 family. Like other members of the family, it is expressed in embryos. However, the phenotype of hch-1 mutants shows that it is required for normal hatching and normal migration of a post-embryonic neuroblast. Furthermore, in spite of its expression in embryogenesis, it is not required for the viability of embryos. These results show new functions of the tolloid/BMP-1 family proteins and give insight into their evolution.  相似文献   

20.
We have analysed various adult organs and different developmental stages of mouse embryos for the presence of octamer-binding proteins. A variety of new octamer-binding proteins were identified in addition to the previously described Oct1 and Oct2. Oct1 is ubiquitously present in murine tissues, in agreement with cell culture data. Although Oct2 has been described as a B-cell-specific protein, similar complexes were also found with extracts from brain, kidney, embryo and sperm. In embryo and brain at least two other proteins, Oct3 and Oct7, are present. A new microextraction procedure allowed the detection of two maternally expressed octamer-binding proteins, Oct4 and Oct5. Both proteins are present in unfertilized oocytes and embryonic stem cells, the latter containing an additional protein, Oct6. Whereas Oct4 was not found in sperm or testis, it is expressed in male and female primordial germ cells. Therefore Oct4 expression is specific for the female germline at later stages of germ cell development. Our results indicate that a family of octamer-binding proteins is present during mouse development and is differentially expressed during early embryogenesis. Protease clipping experiments of Oct4 and Oct1 suggest that both proteins contain similar DNA-binding domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号