首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The role of human leukocyte antigen (HLA) class II molecules on non-antigen presenting cells has been a matter of controversy. We recently reported that ligation of HLA-DR molecule with anti-HLA-DR antibodies (L243) and/or antigenic peptide/T cell receptor complex resulted in a secretion of several chemokines such as RANTES. In the present study, we aimed to detect putative signal transduction pathway leading to RANTES production from fibroblasts when the DR molecules were ligated with L243. Protein tyrosine kinase inhibitor (GF109203X) suppressed RANTES expression in a dose dependent manner for up to 50% from gingival fibroblasts (GF), while protein kinase C inhibitor (genistein) had no inhibitory effect. Ligation of DR molecules with L243 resulted in tyrosine phosphorylation of 54 kDa cellular protein. Thus, we suspected that either Jun N-terminal kinase-2 (JNK-2) or Src family proteins were involved in HLA-DR-mediated signaling. JNK inhibitor (SP600125), but not Src inhibitor (PP2), suppressed both L243 stimulated RANTES mRNA expression and protein secretion. The maximum inhibition for RANTES production by SP600125 was more than 80%. Additionally, JNK inhibitor nearly completely blocked tumor necrosis factor-alpha (TNF-alpha)-induced RANTES production in GF. Furthermore, ligation of GF HLA-DR with L243 induced selective phosphorylation of JNK-2. We concluded that JNK-2 was one of the HLA-DR-mediated signal transduction pathways.  相似文献   

2.
The alpha-chain of the IL-15R (IL-15Ralpha) serves as the specific, high-affinity receptor for IL-15. It is expressed by lymphoid and nonlymphoid cells, including B cell lymphoma lines. In this study, we have further explored IL-15Ralpha-mediated signaling in activated primary B cells and in Raji cells, a human B-lymphoblastoid cell line which expresses the IL-15Ralpha and IL-2Rgamma chains, but lacks the IL-2Rbeta chain. Stimulation of Raji cells with IL-15 induces their proliferation and rescues them from C2-ceramide-induced apoptosis. By immunoprecipitation and Western blotting, we show that treatment of Raji cells and activated primary B cells with IL-15 induces coprecipitation of Syk kinase with the IL-15Ralpha chain. Upon association, the activated Syk kinase phosphorylates the IL-15Ralpha chain as well as phospholipase Cgamma, which coprecipitates with Syk. Furthermore, transfection of Raji cells with stem-loop Syk antisense oligonucleotides prevents IL-15Ralpha and phospholipase Cgamma phosphorylation as well as the inhibition of apoptosis by IL-15. Mutation of a defined region of the intracellular signaling portion of IL-15Ralpha (Tyr227) abrogates both the IL-15Ralpha/Syk association and IL-15Ralpha phosphorylation. Taken together, this suggests that Syk kinase physically and functionally associates with the IL-15Ralpha chain in B cells and that Syk plays a key role in mediating IL-15-induced signal transduction, thus accounting for the distinct functional consequences of IL-15 vs IL-2 binding to B cells.  相似文献   

3.
The evolution of multiple isotypic IgM heavy chain genes in the shark   总被引:2,自引:0,他引:2  
The IgM H chain gene organization of cartilaginous fishes consists of 15-200 miniloci, each with a few gene segments (V(H)-D1-D2-J(H)) and one C gene. This is a gene arrangement ancestral to the complex IgH locus that exists in all other vertebrate classes. To understand the molecular evolution of this system, we studied the nurse shark, which has relatively fewer loci, and characterized the IgH isotypes for organization, functionality, and the somatic diversification mechanisms that act upon them. Gene numbers differ slightly between individuals ( approximately 15), but five active IgM subclasses are always present. Each gene undergoes rearrangement that is strictly confined within the minilocus; in B cells there is no interaction between adjacent loci located > or =120 kb apart. Without combinatorial events, the shark IgM H chain repertoire is based on junctional diversity and, subsequently, somatic hypermutation. We suggest that the significant contribution by junctional diversification reflects the selected novelty introduced by RAG in the early vertebrate ancestor, whereas combinatorial diversity coevolved with the complex translocon organization. Moreover, unlike other cartilaginous fishes, there are no germline-joined VDJ at any nurse shark mu locus, and we suggest that such genes, when functional, are species-specific and may have specialized roles. With an entire complement of IgM genes available for the first time, phylogenetic analyses were performed to examine how the multiple Ig loci evolved. We found that all domains changed at comparable rates, but V(H) appears to be under strong positive selection for increased amino acid sequence diversity, and surprisingly, so does Cmicro2.  相似文献   

4.
5.
Activated Syk, an essential tyrosine kinase in B cell signaling, interacts with Vav guanine nucleotide exchange factors and regulates Vav activity through tyrosine phosphorylation. The Vav SH2 domain binds Syk linker B by an unusual recognition of two closely spaced Syk tyrosines: Y342 and Y346. The binding affinity is highest when both Y342 and Y346 are phosphorylated. An investigation in B cells of the dependence of Vav phosphorylation and NFAT activation on phosphorylation of Y342 and Y346 finds that cellular response levels match the relative binding affinities of the Vav1 SH2 domain for singly and doubly phosphorylated linker B peptides. This key result suggests that the uncommon recognition determinant of these two closely spaced tyrosines is a limiting factor in signaling. Interestingly, differences in affinities for binding singly and doubly phosphorylated peptides are reflected in the on rate, not the off rate. Such a control mechanism would be highly effective for regulating binding among competing Syk binding partners. The nuclear magnetic resonance (NMR) structure of Vav1 SH2 in complex with a doubly phosphorylated linker B peptide reveals diverse conformations associated with the unusual SH2 recognition of two phosphotyrosines. NMR relaxation indicates compensatory changes in loop fluctuations upon binding, with implications for nonphosphotyrosine interactions of Vav1 SH2.  相似文献   

6.
Interleukin 1 induces ferritin heavy chain in human muscle cells   总被引:4,自引:0,他引:4  
Interleukin 1 alpha (IL-1) and tumor necrosis factor alpha (TNF) are two monokines which play a prominent role in the response to inflammation and injury. We recently observed that TNF leads to an increase in the synthesis of the heavy chain of ferritin, suggesting that TNF may be involved in iron homeostasis (Torti et al. (1988) J. Biol. Chem. 263, 12638-12644). The experiments reported here demonstrate that in cultured human muscle cells, IL-1 induces ferritin H mRNA and protein as effectively as TNF. TNF and IL-1 were additive in their effects on ferritin H expression, and IL-1 induction of ferritin H was not blocked by anti-TNF antibodies. Ferritin H induction was a specific response not observed with beta or gamma interferon, nor with transforming growth factor beta. Both differentiated myotubes as well as myoblasts responded to IL-1 with the induction of ferritin H. These results suggest that monokine-mediated alterations in the subunit composition of the ferritin molecule may be of biological relevance in the response to inflammation and injury.  相似文献   

7.
B cell-activating factor (BAFF) and a proliferation-inducing ligand (APRIL) play key roles in peripheral B cell survival, maturation, and differentiation. BAFF and APRIL are produced by a variety of cell types such as macrophages/monocytes and dendritic cells. Our analysis shows that BAFF mRNA is also expressed in all B cell subsets isolated from bone marrow, spleen, and peritoneal cavity of BALB/c mice. APRIL expression is restricted to early stages of B cell development in the bone marrow and the peritoneal B1 subset. Stimulation of B2 and B1 cells with LPS or CpG-oligodeoxynucleotides induced MyD88-dependent plasma cell differentiation and intracellular expression of BAFF and APRIL. Furthermore, activation of B cells up-regulated membrane expression of BAFF. The finding that in vitro activation of B cells is inhibited by the antagonist transmembrane activator and calcium modulator ligand interactor Ig, indicates that BAFF and/or APRIL are released into the culture supernatants. It shows that B cell survival, proliferation, and differentiation are supported by an autocrine pathway. In vivo activation of B cells with a T-dependent Ag- induced BAFF expression in germinal center B cells. In (NZB x NZW)F(1) mice with established autoimmune disease, marginal zone, germinal center B cells, as well as splenic plasma cells expressed high levels of BAFF. In (NZB x NZW)F(1) mice, the continuous activation of B cells and thus overexpression of BAFF and APRIL may contribute to the development of autoimmune disease.  相似文献   

8.
The expression of a variety of cytoprotective genes is regulated by short cis-acting elements in their promoters, called antioxidant response elements (AREs). A central regulator of ARE-mediated gene expression is the NF-E2-related factor 2 (Nrf2). Human hepatitis B virus (HBV) induces a strong activation of Nrf2/ARE-regulated genes in vitro and in vivo. This is triggered by the HBV-regulatory proteins (HBx and LHBs) via c-Raf and MEK. The Nrf2/ARE-mediated induction of cytoprotective genes by HBV results in a better protection of HBV-positive cells against oxidative damage as compared with control cells. Furthermore, there is a significantly increased expression of the Nrf2/ARE-regulated proteasomal subunit PSMB5 in HBV-positive cells that is associated with a decreased level of the immunoproteasome subunit PSMB5i. In accordance with this finding, HBV-positive cells display a higher constitutive proteasome activity and a decreased activity of the immunoproteasome as compared with control cells even after interferon α/γ treatment. The HBV-dependent induction of Nrf2/ARE-regulated genes might ensure survival of the infected cell, shape the immune response to HBV, and thereby promote establishment of the infection.  相似文献   

9.
10.
11.
Three types of myosin heavy chain cDNA clone named 10 °C, intermediate and 30 °C types were isolated from fast skeletal muscles of thermally acclimated grass carp Ctenopharyngodon idellus. Three clones encompassing parts of 3′-translated and entire 3′-untranslated regions showed high heterogeneities in their nucleotide sequences in the 3′-untranslated region. The comparison in the deduced amino acid sequence of the 10 °C-type clone with those of the intermediate- and 30 °C-type clones showed 88% and 89% identities, respectively. By contrast, the deduced amino acid sequence of the intermediate-type clone shared much higher identity of 97% with its 30 °C-type counterpart. Northern blot analysis demonstrated that the 10 °C- and 30 °C-type clones were predominantly expressed in grass carp acclimated to 10 and 30 °C, respectively. The intermediate type was expressed both in grass carp acclimated to 20 and 30 °C. Furthermore, expression patterns of the three myosin heavy chain genes were altered in accompaniment with seasonal temperature fluctuation. In autumn and winter grass carp expressed the 10 °C-type gene almost exclusively, whereas it was completely replaced by the intermediate- and 30 °C-type genes in spring and summer.These results suggest that tetraploid grass carp also undergo an adaptation to fluctuating environmental temperatures by selectively expressing fast skeletal myosin heavy chain isoforms as do diploid common carp previously reported.  相似文献   

12.
Numerous studies indicate that enteroviruses, such as the Coxsackievirus (CV) group, are linked to autoimmune diseases. Virus tropism and tissue access are modulated by vascular endothelial cells (ECs), mainly at the level of the microvasculature. Data on the permissiveness of ECs to CV are, however, scanty and derived from studies on large vessel ECs. To examine the susceptibility of microvascular ECs to infection of group B CV (CVB), human dermal microvascular ECs (HMEC-1) were infected with three CVB strains, and the immunological phenotype of the infected cells was analyzed. All CVB persistently infected the EC cultures without producing overt cytopathic effects. Infected ECs retained endothelial characteristics. Release of infectious particles in cell supernatants persisted for up to 3 mo of culture. Infection up-regulated expression of the adhesion molecules ICAM-1 and VCAM-1, with the highest values detected during the first 30 days of infection (p < 0.05 vs uninfected HMEC-1). CVB infection increased production of the proinflammatory cytokines, IL-6, IL-8, and TNF-alpha, which may account for the enhanced expression of adhesion molecules. Parallel infection of macrovascular HUVEC had less evident effects on induction of ICAM-1 and did not significantly increase expression of VCAM-1. Moreover, mononuclear cell adhesion to CVB-infected HMEC-1 monolayers was increased, compared with uninfected monolayers. These results provide evidence that small vessel ECs can harbor a persistent viral infection, resulting in quantitative modification of adhesion molecule expression, which may contribute to the selective recruitment of subsets of leukocytes during inflammatory immune responses. Furthermore, our data confirm that the behavior against a viral challenge of ECs in large vessels and microvessels may differ.  相似文献   

13.
HLA class II antigens mediate interactions among cells involved in the immune response and play an important role in the process of self recognition. We made use of conventional alloantisera and six well-characterized monoclonal antibodies (MoAb) to study the HLA class II antigens on CALLA-positive malignant B cell populations and autologous normal B cell lines. Forty additional HLA class II-specific MoAb were also tested for their ability to bind to these cells. By using indirect immunofluorescence and immune precipitation assays, we find that malignant B cells often fail to express one or more of the three known types of HLA class II antigens. Cell lines with the following five phenotypes have been identified: HLA-DR+, -DQ+, -DP+; HLA-DR+, -DQ-, -DP+; HLA-DR-, -DQ+, -DP+; HLA-DR-, -DQ-, -DP+; and HLA-DR-, -DQ-, -DP-. These cell lines have been used to characterize the subregion specificity of MoAb that react with HLA class II antigens. This work confirms the existence of complicated patterns of serologic cross-reactivity between the three different types of HLA class II molecules. It also increases our understanding of the specificity of individual MoAb, thereby facilitating future investigation of the distribution and function of individual antigens. Our studies are consistent with the proposal that altered expression of HLA antigens on tumors might impair recognition of these cells by the immune system of the host, thereby contributing to the proliferation of a malignant clone.  相似文献   

14.
Syk has been shown to be activated by osmotic stress, however, the mechanisms involved are largely unknown. In this study, we demonstrated that cell shrinkage, rather than osmolarity, was responsible for osmotic stress-induced Syk activation. Osmotic stress-induced Syk activation depended partly upon aggregation of surface receptors. Moreover, intracellular reactive oxygen species were involved in mediating osmotic stress-induced Syk activation, with osmotic stress-induced Syk activation being inhibited by the pretreatment of cells with N-acetyl-cysteine and reduced glutathione. When cells were treated with the combination of sodium chloride and hydrogen peroxide, there was a synergistic activation of Syk. In conclusion, osmotic stress-induced Syk activation required suramin-inhibitable surface receptor aggregation and accumulation of intracellular reactive oxygen species.  相似文献   

15.

Introduction

Ankylosing spondylitis (AS) is a severe, chronic inflammatory arthritis, with a strong association to the human major histocompatibilty complex (MHC) class I allele human leucocyte antigen (HLA) B27. Disulfide-linked HLA-B27 heavy-chain homodimers have been implicated as novel structures involved in the aetiology of AS. We have studied the formation of HLA-B27 heavy-chain homodimers in human dendritic cells, which are key antigen-presenting cells and regulators of mammalian immune responses.

Method

Both an in vitro dendritic-like cell line and monocyte-derived dendritic cells from peripheral blood were studied. The KG-1 dendritic-like cell line was transfected with HLA-B27 cDNA constructs, and the cellular distribution, intracellular assembly and ability of HLA-B27 to form heavy-chain homodimers was compared with human monocyte-derived dendritic cells after stimulation with bacterial lipopolysaccharide (LPS).

Results

Immature KG-1 cells expressing HLA-B27 display an intracellular source of MHC class I heavy-chain homodimers partially overlapping with the Golgi bodies, but not the endoplasmic reticulum, which is lost at cell maturation with phorbyl-12-myristate-13-acetate (PMA) and ionomycin. Significantly, the formation of HLA-B27 homodimers in transfected KG-1 cells is induced by maturation, with a transient induction also seen in LPS-stimulated human monocyte-derived dendritic cells expressing HLA-B27. The weak association of wildtype HLA-B*2705 with the transporter associated with antigen processing could also be enhanced by mutation of residues at position 114 and 116 in the peptide-binding groove to those present in the HLA-B*2706 allele.

Conclusion

We have demonstrated that HLA-B27 heavy-chain homodimer formation can be induced by dendritic cell activation, implying that these novel structures may not be displayed to the immune system at all times. Our data suggests that the behaviour of HLA-B27 on dendritic cells may be important in the study of inflammatory arthritis.  相似文献   

16.
Park MH  Song HS  Kim KH  Son DJ  Lee SH  Yoon DY  Kim Y  Park IY  Song S  Hwang BY  Jung JK  Hong JT 《Biochemistry》2005,44(23):8326-8336
Cobrotoxin is known to bind with cysteine residues of biological molecules such as nicotine acetylcholine receptor. Cobrotoxin may modify IKKs and p50 through protein-protein interaction since cysteine residues are present in the kinase domains of IKKalpha and IKKbeta and in the p50 of NF-kappaB. Our surface plasmon resonance analysis showed that cobrotoxin directly binds to p50 (K(d) = 1.54 x 10(-)(5) M), IKKalpha (K(d) = 3.94 x 10(-)(9) M) and IKKbeta (K(d) = 3.4 x 10(-)(8) M) with high binding affinity. Moreover, these protein-protein interactions suppressed the lipopolysaccharide (LPS, 1 microg/mL)- and the sodium nitroprusside (SNP, 200 microM)-induced DNA binding activity of NF-kappaB and NF-kappaB-dependent luciferase activity in astrocytes and Raw 264.7 macrophages. These inhibitory effects were correlated with the inhibition of IkappaB release and p50 translocation. Inhibition of NF-kappaB by cobrotoxin resulted in reductions in the LPS-induced expressions of COX-2, iNOS, cPLA(2), IL-4, and TNF-alpha in astrocytes and in COX-2 expression induced by SNP, LPS, and TNF-alpha in astrocytes. Moreover, these inhibitory effects of cobrotoxin were reversed by adding reducing agents, dithiothreitol and glutathione. In addition, cobrotoxin did not have any inhibitory effect on NF-kappaB activity in cells carrying mutant p50 (C62S), IKKalpha (C178A), and IKKbeta (C179A), with the exception of IKKbeta (K44A) mutant plasmid. Confocal microscopic analysis showed that cobrotoxin is uptaken into the nucleus of cells. These results demonstrate that cobrotoxin directly binds to the sulfhydryl groups of p50 and IKKs, and that this results in reduced IkappaB release and the translocation of p50, thereby inhibiting the activation of NF-kappaB.  相似文献   

17.
Influenza infections cause airway epithelial inflammation and oxidant-mediated damage. In this setting, cellular antioxidant enzymes may protect airway epithelial cells against damage resulting from toxic oxygen radicals produced by activated leukocytes. Therefore, we tested the effect of influenza virus infection, as well as exposure to human recombinant interferon-γ (IFN-γ), on gene expression for the antioxidant enzymes manganese supeoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/ZnSOD), indoleamine 2,3-dioxygenase (IDO), and catalase in primary cultures of human airway epithelial cells. In these cells, both viral infection and IFN-γ increased MnSOD and IDO mRNAs. In contrast, neither viral infection nor IFN-γ affected Cu/ZnSOD gene expression, and both viral infection and IFN-γ decreased catalase gene expression. The differential effects of viral infection on antioxidant gene expression and their further amplification by IFN-γ are likely to be important protective mechanisms in viral airway infections.  相似文献   

18.
19.
Hitomi T  Yanagi S  Inatome R  Yamamura H 《FEBS letters》1999,445(2-3):371-374
Phospholipase D (PLD) has been proposed to play a key role in the signal transduction of cellular responses to various extracellular signals. Herein we provide biochemical and genetic evidence that cross-linking of the B cell receptor (BCR) induces rapid activation of PLD through a Syk-, Btk- and phospholipase C (PLC)-gamma2-dependent pathway in DT40 cells. Activation of PLD upon BCR engagement is completely blocked in Syk- or Btk-deficient cells, but unaffected in Lyn-deficient cells. Furthermore, in PLC-gamma2-deficient cells, BCR engagement failed to activate PLD. These results demonstrate that Syk, Btk and PLC-gamma2 are essential for BCR-induced PLD activation.  相似文献   

20.
Functional activation of T cells requires ligation of Ag receptors with specific peptides presented by MHC molecules on APCs concurrent with appropriate contacts of cell surface accessory molecules. Among these accessory molecules, interactions between CD28/CTLA-4 with B7 family members (CD80 and CD86) and CD40 with CD40 ligand (CD40L) play a decisive role in regulating the progression of balanced immune responses. However, most information regarding the role of accessory molecules in immune responses has been derived in the context of signals from the TCRs. Little understanding has been achieved regarding the consequence of ligation of costimulation molecules in absence of signals from the TCR. By employing an in vivo murine system, we show, herein, that ligation of CD28 alone with anti-CD28 Abs leads to a dramatic enlargement of the peripheral lymphoid organs characterized primarily by the expansion of B cells. B cells from anti-CD28-treated mice are resistant to spontaneous and anti-IgM-induced apoptosis. These cells are also unsusceptible to FasL-mediated apoptosis. Interestingly, this in vivo effect of CD28 on B cells is largely mediated by inducing the expression of CD40L, since coadministration of a blocking Ab against CD40L inhibited CD28-mediated B cell survival and expansion. Therefore, CD28-mediated expression of CD40L may play an important role in the regulation of lymphocyte homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号