首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The c-myc oncogene plays an important role in tumorigenesis and is frequently deregulated in many human cancers, including gastrointestinal cancers. In humans, mutations of the adenomatous polyposis coli (Apc) tumor suppressor gene occur in most colorectal cancers. Mutation of Apc leads to stabilization of beta-catenin and increases in beta-catenin target gene expression (c-myc and cyclin D1), whose precise functional significance has not been examined using genetic approaches. Apc(Min/+) mice are a model of familial adenomatous polyposis and are heterozygous for an Apc truncation mutation. We have developed a model for examining the role of c-Myc in Apc-mediated tumorigenesis. We crossed c-myc(+/-) mice to Apc(Min/+) to generate Apc(Min/+) c-myc(+/-) animals. The compound Apc(Min/+) c-myc(+/-) mice were used to evaluate the effect of c-myc haploinsufficiency on the Apc(Min/+) phenotype. We observed a significant reduction in tumor numbers in the small intestine of Apc(Min/+) c-myc(+/-) mice compared with control Apc(Min/+) c-myc(+/+) mice. In addition, we observed one to three polyps per colon in Apc(Min/+) c-myc(+/+) mice, whereas only two lesions were observed in the colons of Apc(Min/+) mice that were haploinsufficient for c-myc. Moreover, reduction in c-myc levels resulted in a significant increase in the survival of these animals. Finally, we observed marked decreases in vascular endothelial growth factor, EphA2, and ephrin-B2 expression as well as marked decreases in angiogenesis in intestinal polyps in Apc(Min/+) c-myc(+/-) mice. This study shows that c-Myc is critical for Apc-dependent intestinal tumorigenesis in mice and provides a potential therapeutic target in the treatment of colorectal cancer.  相似文献   

2.
Overexpression of the epidermal growth factor receptor (EGFR) and its increased tyrosine kinase activity are implicated in colorectal cancer (CRC) development and malignant progression. The C57BL/6J-Min/+ (Min/+) mouse is a model for CRC and develops numerous intestinal adenomas. We analyzed the normal mucosa of Min/+ and Apc+/+ (WT) littermate mice together with Apc-null adenomas to gain insight into the roles of Egfr in these intestinal tissues. Protein analyses showed that Egfr activity was highest in the tumors, and also up-regulated in Min/+ relative to WT enterocytes. Expression of ubiquitylated Egfr (Egfr-Ub) was increased in Min/+ enterocytes and tumors. Tumors exhibited increased association of Egfr with clathrin heavy chain (CHC), Gab1, and p85alpha, the regulatory subunit of phosphoinositide 3-kinase (PI3K), and tumors also overexpressed c-Src, PDK1, and Akt. Immunohistochemistry for Akt-p-Ser473 revealed a low level of this active kinase in Min/+ and WT enterocytes and its strong presence in tumors. Prostaglandin E2 (PGE2) is a product of cyclooxygenase-2 (Cox-2) activity that is up-regulated in Min/+ tumors and transactivates Egfr. PGE2 expression was significantly higher in untreated Min/+ tumors and reduced by treatment with the Cox-2 inhibitor, celecoxib. Dietary administration of this NSAID also inhibited Egfr activity in tumors. Increased activation of the EGFR-PI3K-Akt signaling pathway in tumors relative to Apc+/+ and ApcMin/+ enterocytes provides potential opportunities for therapeutic interventions to differentially suppress tumor formation, promotion, progression, and/or recurrence.  相似文献   

3.
As a traditional anti‐inflammatory Chinese herbal medicine, Alkaloid berberine has been recently reported to exhibit anti‐tumour effects against a wide spectrum of cancer. However, the mechanism was largely unknown. Gene chip array reveals that with berberine treatment, c‐Myc, the target gene of Wnt pathway, was down‐regulated 5.3‐folds, indicating that berberine might inhibit Wnt signalling. TOPflash analysis revealed that Wnt activity was significantly reduced after berberine treatment, and the mechanism of which might be that berberine disrupted β‐catenin transfer to nucleus through up‐regulating the expression of adenomatous polyposis coli (APC) gene and stabilized APC‐β‐catenin complex. Berberine administration in ApcMin/+ mice exhibited fewer and smaller polyps in intestine, along with reduction in cyclin D1 and c‐Myc expression. In clinical practice, oral administration of berberine also significantly reduced the familial adenomatous polyposis patients' polyp size along with the inhibition of cyclin D1 expression in polyp samples. These observations indicate that berberine inhibits colon tumour formation through inhibition of Wnt/β‐catenin signalling and berberine might be a promising drug for the prevention of colon cancer.  相似文献   

4.
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces intestinal tumours in C57BL/6J-multiple intestinal neoplasia (Min)/+ mice. The main mechanism for PhIP-induced tumour induction in Min/+ mice is loss of the wild-type adenomatous polyposis coli (Apc) allele, i.e. loss of heterozygosity (LOH). In this study, single injections of either 10, 17.5 or 25 mg/kg PhIP on days 3-6 after birth all increased the mean number of small intestinal tumours two to three-fold, from 37.7 in controls to 124.8 in the PhIP-treated Min/+ mice. In total, we analysed 292 small intestinal tumours and 253 of these had LOH. The frequency of LOH in the Apc gene was 88, 93, 83 and 84% in tumours of 0, 10, 17.5 and 25 mg/kg PhIP-treated mice, respectively. Therefore, these lower doses of PhIP did not reduce the frequency of LOH, as found in our previous study with a single injection of 50 mg/kg PhIP (Mutat. Res. 1-2 (2002) 157). In the second part of this study, we wanted to characterise Apc truncation mutations from tumour samples apparently retaining the Apc wild-type allele from this and two previous experiments with PhIP-exposed Min/+ mice. In the first half of exon 15 in Apc, we verified 25 mutations from 804 tumour samples of PhIP-treated mice. Of these were 60% G-->T transversions, and 16% G deletions, indicating that these are the predominant types of PhIP-induced truncation mutations in the Apc gene in Min/+ mice. Most of the mutations were located between codon 989 and 1156 corresponding to the first part of the beta-catenin binding region. We also identified two Apc truncation mutations from 606 spontaneously formed intestinal tumours from untreated Min/+ mice, one C-->T transition and one T insertion, which were different from those induced by PhIP.  相似文献   

5.
The C57BL/6J-Min/+ (multiple intestinal neoplasia) mouse has a heterozygous nonsense Apc(Min) (adenomatous polyposis coli) mutation, and numerous adenomas spontaneously develop in the intestine. Neonatal exposure of Min/+ mice to the food carcinogens 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (one injection of 50mg/kg) increased the number of small intestinal tumours about three- and two-fold, respectively. The number of colonic tumours was only increased in males. We examined whether the wild-type Apc allele was affected in intestinal tumours induced by either PhIP or IQ. In spontaneously formed and in IQ-induced small intestinal and colonic tumours from these mice, the main mechanism for tumour induction was loss of wild-type Apc allele, i.e. loss of heterozygosity (LOH). In contrast to the IQ-induced (84% LOH) and spontaneously (88% LOH) formed tumours, only 55% of the PhIP-induced small intestinal tumours from males showed LOH. Tumours that apparently had retained the wild-type Apc allele were further analysed for the presence of truncated Apc proteins by the in vitro synthesised protein (IVSP) assay. Truncated Apc proteins, indicating truncation mutations in exon 15 of the Apc gene, were detected in two of the 12 PhIP-induced tumours in segment 2 (codons 686-1217), and two of five IQ-induced tumours, one in segment 2 and the other in segment 3 (codons 1099-1693). Three of these four mutations, all in segment 2 of the Apc gene, were confirmed by sequencing. The PhIP-induced mutations were detected at codon 1125 (C deletion) and 1130 (G-T transversion), and the IQ-induced mutation was at codon 956 (C-T transition). Importantly, no truncated proteins were detected in tumours from unexposed mice with apparently retained wild-type Apc allele. These results show that one injection of either PhIP or IQ induces intestinal tumours in the Min/+ mice by inactivation of the wild-type Apc allele either by causing LOH or truncation mutations.  相似文献   

6.
Inflammation is as an important component of intestinal tumorigenesis. The activation of Toll‐like receptor 4 (TLR4) signalling promotes inflammation in colitis of mice, but the role of TLR4 in intestinal tumorigenesis is not yet clear. About 80%–90% of colorectal tumours contain inactivating mutations in the adenomatous polyposis coli (Apc) tumour suppressor, and intestinal adenoma carcinogenesis in familial adenomatous polyposis (FAP) is also closely related to the germline mutations in Apc. The ApcMin/+ (multiple intestinal neoplasia) model mouse is a well‐utilized model of FAP, an inherited form of intestinal cancer. In this study, ApcMin/+ intestinal adenoma mice were generated on TLR4‐sufficient and TLR4‐deficient backgrounds to investigate the carcinogenic effect of TLR4 in mouse gut by comparing mice survival, peripheral blood cells, bone marrow haematopoietic precursor cells and numbers of polyps in the guts of ApcMin/+ WT and ApcMin/+ TLR4?/? mice. The results revealed that TLR4 had a critical role in promoting spontaneous intestinal tumorigenesis. Significant differential genes were screened out by the high‐throughput RNA‐Seq method. After combining these results with KEGG enrichment data, it was determined that TLR4 might promote intestinal tumorigenesis by activating cytokine‐cytokine receptor interaction and pathways in cancer signalling pathways. After a series of validation experiments for the concerned genes, it was found that IL6, GM‐CSF (CSF2), IL11, CCL3, S100A8 and S100A9 were significantly decreased in gut tumours of ApcMin/+ TLR4?/? mice compared with ApcMin/+ WT mice. In the functional study of core down‐regulation factors, it was found that IL6, GM‐CSF, IL11, CCL3 and S100A8/9 increased the viability of colon cancer cell lines and decreased the apoptosis rate of colon cancer cells with irradiation and chemical treatment.  相似文献   

7.
Sphingosine kinase (Sphk) enzymes are important in intracellular sphingolipid metabolism as well as in the biosynthesis of sphingosine 1-phosphate (S1P), an extracellular lipid mediator. Here, we show that Sphk1 is expressed and is required for small intestinal tumor cell proliferation in Apc Min/+ mice. Adenoma size but not incidence was dramatically reduced in Apc Min/+ Sphk(-/-) mice. Concomitantly, epithelial cell proliferation in the polyps was significantly attenuated, suggesting that Sphk1 regulates adenoma progression. Although the S1P receptors (S1P1R, S1P2R, and S1P3R) are expressed, polyp incidence or size was unaltered in Apc Min/+ S1p2r(-/-), Apc Min/+ S1p3r(-/-), and Apc Min/+ S1p1r(+/-) bigenic mice. These data suggest that extracellular S1P signaling via its receptors is not involved in adenoma cell proliferation. Interestingly, tissue sphingosine content was elevated in the adenomas of Apc Min/+ Sphk1(-/-) mice, whereas S1P levels were not significantly altered. Concomitantly, epithelial cell proliferation and the expression of the G1/S cell cycle regulator CDK4 and c-myc were diminished in the polyps of Apc Min/+ Sphk1(-/-) mice. In rat intestinal epithelial (RIE) cells in vitro, Sphk1 overexpression enhanced cell cycle traverse at the G1/S boundary. In addition, RIE cells treated with sphingosine but not C6-ceramide exhibited reduced cell proliferation, reduced retinoblastoma protein phosphorylation, and cyclin-dependent kinase 4 (Cdk4) expression. Our findings suggest that Sphk1 plays a critical role in intestinal tumor cell proliferation and that inhibitors of Sphk1 may be useful in the control of intestinal cancer.  相似文献   

8.
The Min/+ mouse is a model for APC-dependent colorectal cancer (CRC). We showed that tumorigenesis in this animal was associated with decreased E-cadherin adhesion and increased epidermal growth factor receptor (Egfr) activity in the non-tumor intestinal mucosa. Here, we tested whether these abnormalities correlated with changes in the actin cytoskeleton due to increased Rho-ROCK signaling. We treated Apc+/+ (WT) littermate small intestine with EGTA, an inhibitor of E-cadherin, and with LPA, an RhoA activator; both induced effects on adhesion and kinase activity that mimicked the Min/+ phenotype. GTP-bound Rho was increased in Min/+ enterocytes relative to WT. Since RhoA activity is associated with actomyosin contractility, markers of this signaling cascade were assessed including phosphorylated myosin light chain (MLC), cofilin, Pyk2, Src, and MAPK kinases. The increased actomyosin contractility characterizing Min/+ intestinal tissue was suppressed by the ROCK inhibitor, Y27632, but was inducible in the WT by EGTA or LPA. Finally, ultrastructural imaging revealed changes consistent with actomyosin contractility in Min/+ enterocytes. Thus, the positive regulation of E-cadherin adhesion provided by Apc+ in vivo allows proper negative regulation of Egfr, Src, Pyk2, and MAPK, as well as RhoA activities.  相似文献   

9.
Sporadic and familial colorectal tumours usually harbour biallelic adenomatous polyposis coli (APC)‐associated mutations that result in constitutive activation of Wnt signalling. Furthermore, APC activates Asef and Asef2, which are guanine‐nucleotide exchange factors specific for Rac1 and Cdc42. Here, we show that Asef and Asef2 expression is aberrantly enhanced in intestinal adenomas and tumours. We also show that deficiency of either Asef or Asef2 significantly reduces the number and size of adenomas in ApcMin/+ mice, which are heterozygous for an APC mutation and spontaneously develop adenomas in the intestine. We observed that the APC–Asef/Asef2 complex induces c‐Jun amino‐terminal kinase‐mediated transactivation of matrix metalloproteinase 9, and is required for the invasive activity of colorectal tumour cells. Furthermore, we show that Asef and Asef2 are required for tumour angiogenesis. These results suggest that Asef and Asef2 have a crucial role in intestinal adenoma formation and tumour progression, and might be promising molecular targets for the treatement of colorectal tumours.  相似文献   

10.
Cyclin D1 is postulated to be a target of the canonical Wnt pathway and critical for intestinal adenoma development. We show here that, unlike cyclin D1 reporter assays, endogenous cyclin D1 levels are not affected following antagonism of the Wnt pathway in vitro, nor is cyclin D1 immediately up-regulated following conditional loss of Apc in vivo. Cyclin D1 levels do, however, increase in a delayed manner in a small subset of cells, suggesting such up-regulation occurs as a secondary event. We also analyzed the immediate consequences of Apc loss in a cyclin D1(-/-) background and failed to find any cyclin D1-dependent phenotypes. However, we did observe elevated cyclin D1 expression in lesions developing 20 days after Apc loss. In these circumstances, all adenomas (but not smaller lesions) showed cyclin D1 up-regulation. Finally in a smaller study, we analyzed whether cyclin D1 deficiency affected adenoma formation 20 days following induced loss of Apc. Unlike AhCre(+) Apc(fl/fl) mice (which all developed adenomas), doubly mutant AhCre(+) Apc(fl/fl) cyclin D1(-/-) mice only developed small lesions. Taken together, this argues that cyclin D1 up-regulation in intestinal neoplasia is important for tumor progression rather than initiation.  相似文献   

11.
The APC gene is mutated in familial adenomatous polyposis (FAP) as well as in sporadic colorectal tumours. The product of the APC gene is a 300 kDa cytoplasmic protein associated with the adherence junction protein catenin. Here we show that overexpression of APC blocks serum-induced cell cycle progression from G0/G1 to the S phase. Mutant APCs identified in FAP and/or colorectal tumours were less inhibitory and partially obstructed the activity of the normal APC. The cell-cycle blocking activity of APC was alleviated by the overexpression of cyclin E/CDK2 or cyclin D1/CDK4. Consistent with this result, kinase activity of CDK2 was significantly down-regulated in cells overexpressing APC although its synthesis remained unchanged, while CDK4 activity was barely affected. These results suggest that APC may play a role in the regulation of the cell cycle by negatively modulating the activity of cyclin-CDK complexes.  相似文献   

12.
13.
The C57BL/6J-Min/+ (Min/+) mouse bears a mutant Apc gene and therefore is an important in vivo model of intestinal tumorigenesis. Min/+ mice develop adenomas that exhibit loss of the wild-type Apc allele (Apc(Min/-)). Previously, we found that histologically normal enterocytes bearing a truncated Apc protein (Apc(Min/+)) migrated more slowly in vivo than enterocytes with either wild-type Apc (Apc(+/+)) or with heterozygous loss of Apc protein (Apc(1638N)). To study this phenotype further, we determined the effect of the Apc(Min) mutation upon cell-cell adhesion by examining the components of the adherens junction (AJ). We observed a reduced association between E-cadherin and beta-catenin in Apc(Min/+) enterocytes. Subcellular fractionation of proteins from Apc(+/+), Apc(Min/+), and Apc(Min/-) intestinal tissues revealed a cytoplasmic localization of intact E-cadherin only in Apc(Min/+), suggesting E-cadherin internalization in these enterocytes. beta-Catenin tyrosine phosphorylation was also increased in Apc(Min/+) enterocytes, consistent with its dissociation from E-cadherin. Furthermore, Apc(Min/+) enterocytes showed a decreased association between beta-catenin and receptor protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), and Apc(Min/-) cells demonstrated an association between beta-catenin and receptor protein-tyrosine phosphatase gamma. In contrast to the Apc(Min/+) enterocytes, Apc(Min/-) adenomas displayed increased expression and association of E-cadherin, beta-catenin, and alpha-catenin relative to Apc(+/+) controls. These data show that Apc plays a role in regulating adherens junction structure and function in the intestine. In addition, discovery of these effects in initiated but histologically normal tissue (Apc(Min/+)) defines a pre-adenoma stage of tumorigenesis in the intestinal mucosa.  相似文献   

14.
Red and processed meats are considered risk factors for colorectal cancer (CRC); however, the underlying mechanisms are still unclear. One cause for the potential link between CRC and meat is the heme iron in red meat. Two pathways by which heme and CRC promotion may be linked have been suggested: fat peroxidation and N-nitrosation. In the present work we have used the novel A/J Min/+ mouse model to test the effects of dietary hemin (a model of red meat), and hemin in combination with nitrite (a model of processed meat) on intestinal tumorigenesis. Mice were fed a low Ca2+ and vitamin D semi-synthetic diet with added hemin and/or nitrite for 8 weeks post weaning, before termination followed by excision and examination of the intestinal tract. Our results indicate that dietary hemin decreased the number of colonic lesions in the A/J Min/+ mouse. However, our results also showed that the opposite occurred in the small intestine, where dietary hemin appeared to stimulate tumor growth. Furthermore, we find that nitrite, which did not have an effect in the colon, appeared to have a suppressive effect on tumor growth in the small intestine.  相似文献   

15.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is one of the mutagenic heterocyclic amines derived from cooked meat. In previous animal studies, spontaneous tumour formation in B6(Min/+) mice was associated with somatic loss of the wild-type Apc+ allele by loss of the entire chromosome 18 or by recombination. The objective of this study was to examine genetic changes caused by PhIP-exposure in a mouse intestinal cell line and in tumours from hybrid mice by keeping track of the chromosomes carrying the two Apc alleles. We transformed the SV40 T-immortalised intestinal epithelial cell line IMCE, derived from the B6(Min/+) mice by exposure to N-OH-PhIP, and studied the effect on Apc status and chromosome 18. Eighteen transformed cultures were obtained and all of them had retained the Apc+ allele. Five of seven transformed cultures were tumorigenic after implantation in nude mice. Chromosomal analysis of these five cultures and the parent IMCE cell line showed that the IMCE cells were near-tetraploid with an average of 77 chromosomes/cell, while the tumorigenic cell cultures were all triploid to hyper-triploid with a range of 61-69 chromosomes/cell. The number of copies of chromosome 18 was about four in the IMCE line and this copy number was retained in the transformed lines derived from IMCE. Changes in chromosome 18 and Apc during tumour development in vivo were examined in spontaneously formed and PhIP-induced intestinal tumours from two hybrid mice strains, i.e. B6(Min/+) - a murine FAP model - crossed with either AKR/J or A/J. We evaluated the allelic status of Apc, and the heterogenic microsatellite markers D18Mit19 and D18Mit4, located at the upper and lower ends of chromosome 18, respectively. In tumours from untreated animals, instability in the D18Mit19 and Apc was observed. Upon PhIP exposure, the B6(Min/A+) hybrid mouse tumours differed distinctly in genetic profile from those obtained from untreated animals and we detected three genetically different tumour groups, all of which had apparently retained Apc+. One group had allelic balance between the Apc(Min) and Apc+, the second had allelic imbalance between the Apc and D18Mit4 alleles, indicative of chromosomal stability in the first group and instability in the lower end of chromosome 18 in the second group, respectively. The third group showed variable allelic status of the three markers. A similar change in genetic profile was also seen in intestinal tumours of PhIP-exposed B6(Min/AKR+) hybrid mice, but it was less pronounced. Chromosomal breaks and/or recombinational events could be alternative explanations for the observed allelic imbalances in chromosome 18 markers in intestinal tumours from PhIP-exposed mice.  相似文献   

16.
Carcinogenesis induced by space radiation is considered a major risk factor in manned interplanetary and other extended missions. The models presently used to estimate the risk for cancer induction following deep space radiation exposure are based on data from A-bomb survivor cohorts and do not account for important biological differences existing between high-linear energy transfer (LET) and low-LET-induced DNA damage. High-energy and charge (HZE) radiation, the main component of galactic cosmic rays (GCR), causes highly complex DNA damage compared to low-LET radiation, which may lead to increased frequency of chromosomal rearrangements, and contribute to carcinogenic risk in astronauts. Gastrointestinal (GI) tumors are frequent in the United States, and colorectal cancer (CRC) is the third most common cancer accounting for 10% of all cancer deaths. On the basis of the aforementioned epidemiological observations and the frequency of spontaneous precancerous GI lesions in the general population, even a modest increase in incidence by space radiation exposure could have a significant effect on health risk estimates for future manned space flights. Ground-based research is necessary to reduce the uncertainties associated with projected cancer risk estimates and to gain insights into molecular mechanisms involved in space-induced carcinogenesis. We investigated in vivo differential effects of γ-rays and HZE ions on intestinal tumorigenesis using two different murine models, ApcMin/+ and Apc1638N/+. We showed that γ- and/or HZE exposure significantly enhances development and progression of intestinal tumors in a mutant-line-specific manner, and identified suitable models for in vivo studies of space radiation–induced intestinal tumorigenesis.  相似文献   

17.
Abstract. Objectives: This article is to study the role of G1/S regulators in differentiation of pluripotent embryonic cells. Materials and methods: We established a P19 embryonal carcinoma cell‐based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G1/S regulators were analysed with respect to growth and differentiation parameters of the cells. Results and Conclusions: We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E–CDK2 but not of cyclin D–CDK4/6–p27 complexes. In an exponentially growing P19 cell population, the cyclin D1–CDK4 complex is detected, which is replaced by cyclin D2/3–CDK4/6–p27 complex following density arrest. During endodermal differentiation kinase‐inactive cyclin D2/D3–CDK4–p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2–CDK4–p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D–CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G1/S transition‐regulating machinery in early embryonic cells.  相似文献   

18.
D-type cyclins are key regulators of the cell division cycle. In association with Cyclin Dependent Kinases (CDK) 2/4/6, they control the G1/S-phase transition in part by phosphorylation and inactivation of tumor suppressor of retinoblastoma family. Defective regulation of the G1/S transition is a well-known cause of cancer, making the cyclin D1-CDK4/6 complex a promising therapeutic target.Our objective is to develop inhibitors that would block the formation or the activation of the cyclin D1-CDK4/6 complex, using in silico docking experiments on a structural homology model of the cyclin D1-CDK4/6 complex. To this end we focused on the cyclin subunit in three different ways: (i) targeting the part of the cyclin D1 facing the N-terminal domain of CDK4/6, in order to prevent the dimer formation; (ii) targeting the part of the cyclin D1 facing the C-terminal domain of CDK4/6, in order to prevent the activation of CDK4/6 by blocking the T-loop in an inactive conformation, and also to destabilize the dimer; (iii) targeting the groove of cyclin D1 where p21 binds, in order to mimic its inhibition mode by preventing binding of cyclin D1-CDK4/6 complex to its targets. Our strategy, and the tools we developed, will provide a computational basis to design lead compounds for novel cancer therapeutics, targeting a broad range of proteins involved in the regulation of the cell cycle.  相似文献   

19.
The cell cycle-regulatory protein, cyclin D1, is the sensor that connects the intracellular cell cycle machinery to external signals. Given this central role in the control of cell proliferation, it was surprising that mice lacking the cyclin D1 gene were viable and fertile. Fertility requires 17beta-estradiol (E2)-induced uterine luminal epithelial cell proliferation. In these cells E2 causes the translocation of cyclin D1/cyclin-dependent kinase 4 (CDK4) from the cytoplasm into the nucleus with the consequent phosphorylation of the retinoblastoma protein. In cyclin D1 null mice, E2 also induces retinoblastoma protein phosphorylation and DNA synthesis in a normal manner. CDK4 activity was slightly reduced in the D1 null mice compared with wild-type mice. This CDK4 activity was due to complexes of cyclin D2/CDK4. Cyclin D2 was translocated into the nucleus in response to E2 in the cyclin D1-/- mice to a much greater degree than in wild-type mice. This cyclin D2/CDK4 complex was also able to bind p27kip1 in cyclin D1-/- uterine luminal epithelial cells, allowing for the activation of CDK2. Our data show that in vivo cyclin D2 can completely compensate for the loss of cyclin D1 and reinforces the conclusions that cyclin Ds are the central regulatory point in the proliferative responses of epithelial cells to estrogens.  相似文献   

20.
Interactions between the inflammatory chemokine CCL20 and its receptor CCR6 have been associated with colorectal cancer growth and metastasis, however, a causal role for CCL20 signaling through CCR6 in promoting intestinal carcinogenesis has not been demonstrated in vivo. In this study, we aimed to determine the role of CCL20-CCR6 interactions in spontaneous intestinal tumorigenesis. CCR6-deficient mice were crossed with mice heterozygous for a mutation in the adenomatous polyposis coli (APC) gene (APCMIN/+ mice) to generate APCMIN/+ mice with CCR6 knocked out (CCR6KO-APCMIN/+ mice). CCR6KO-APCMIN/+ mice had diminished spontaneous intestinal tumorigenesis. CCR6KO-APCMIN/+ also had normal sized spleens as compared to the enlarged spleens found in APCMIN/+ mice. Decreased macrophage infiltration into intestinal adenomas and non-tumor epithelium was observed in CCR6KO-APCMIN/+ as compared to APCMIN/+ mice. CCL20 signaling through CCR6 caused increased production of CCL20 by colorectal cancer cell lines. Furthermore, CCL20 had a direct mitogenic effect on colorectal cancer cells. Thus, interactions between CCL20 and CCR6 promote intestinal carcinogenesis. Our results suggest that the intestinal tumorigenesis driven by CCL20-CCR6 interactions may be driven by macrophage recruitment into the intestine as well as proliferation of neoplastic epithelial cells. This interaction could be targeted for the treatment or prevention of malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号