首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lu F  Shi D  Wei J  Yang S  Wei Y 《Theriogenology》2005,64(6):1309-1319
The objective of this study was to explore the feasibility of employing adult fibroblasts as donor cells in interspecies nuclear transfer (NT) between buffaloes and cattle. Buffalo and bovine oocytes matured in vitro for 22 h were enucleated by micromanipulation using the Spindle View system. An ear fibroblast, pretreated with 0.1 microg/mL aphidicolin for 24 h, followed by culture for 2-9 days in Dulbecco's Modified Eagle's Media+0.5% fetal bovine serum, was introduced into the cytoplast by microinjection. Reconstructed oocytes were activated by exposure to 5 microM ionomycin for 5 min and 2 mM 6-dimethylaminopurine for 3 h. When buffalo adult fibroblasts were used as donor cells, there were no differences (P < 0.75) in the cleavage rate (66.2% versus 64.0%) between bovine and buffalo recipient oocytes, but more embryos derived from bovine cytoplasts developed to blastocysts than from buffalo cytoplasts (13.3% versus 3.0%, P < 0.05). When bovine adult fibroblasts were used as donor nuclei, both cleavage rate (45.3%) and blastocyst yield (4.5%) of NT embryos derived from buffalo cytoplasts were lower than those of NT embryos derived from bovine cytoplasts (65.5 and 11.9%, P < 0.05). The proportion of parthenogenetic buffalo (29.1%) or bovine (35.6%) oocytes developing to blastocysts was higher than those of NT embryos (P < 0.01). Interspecies NT embryos were derived from the donor cells and 55.0-61.9% of them possessed a normal diploid karyotype. In conclusion, embryos reconstructed by interspecies NT of adult fibroblasts between buffaloes and cattle developed to blastocysts, but bovine cytoplasts may direct embryonic development more effectively than buffalo cytoplasts, regardless of donor cell species.  相似文献   

2.
The potential benefits of generating and using transgenic cattle range from improvements in agriculture to the production of large quantities of pharmaceutically relevant proteins.Previous studies have attempted to produce transgenic cattle and other livestock by pronuclear injection and somatic cell nuclear transfer,but these approaches have been largely ineffective;however,a third approach, lentivirus-mediated transgenesis,has successfully produced transgenic livestock.In this study,we generated transgenic(TG) Korean native cattle using perivitelline space injection of viral vectors,which expressed enhanced green fluorescent protein(EGFP) systemically. Two different types of lentiviral vectors derived from feline immunodeficiency virus(FIV) and human immunodeficiency virus(HIV) carrying EGFP were injected into the perivitelline space of MII oocytes.EGFP expression at 8-cell stage was significantly higher in the FIV group compared to the HIV group(47.5%±2.2%v.s.22.9%±2.9%).Eight-cell embryos that expressed EGFP were cultured into blastocysts and then transferred into 40 heifers.Ten heifers were successfully impregnated and delivered 10 healthy calves.All of these calves expressed EGFP as detected by in vivo imaging,PCR and Southern blotting.In addition,we established an EGFP-expressing cell line from TG calves,which was followed by nuclear transfer(NT).Recloned 8-cell embryos also expressed EGFP,and there were no differences in the rates of fusion,cleavage and development between cells derived from TG and non-TG calves,which were subsequently used for NT.These results illustrate that FIV-based lentiviruses are useful for the production of TG cattle.Moreover,our established EGFP cell line can be used for additional studies that involve induced pluripotent stem cells.  相似文献   

3.
《Animal reproduction science》2006,91(3-4):307-328
In vitro fertilization (IVF) and embryonic development of mature and meiotically arrested porcine oocytes were compared in the present study. After in vitro maturation (IVM) of cumulus-oocyte complexes for 48 h, 75.4% of them extruded a visible polar body (PB). Most of the oocytes with a first polar body (PB+ group) were at the metaphase-II (M-II) stage (91.4%). Most of the oocytes without a visible polar body (PB− group) appeared to be arrested at the germinal vesicle (GV) (41.6%) and metaphase-I (M-I) (34.0%) stages. After IVF of oocytes (day of IVF = Day 0), there was no difference between PB+ and PB groups in rates of sperm penetration, mono-spermy, however oocyte activation rate after penetration was greater in the PB+ than in the PB− group (P < 0.05). On Day 2, there was no difference between rates of embryos cleaved at the 2–4 cell stages in PB+ and PB− groups (42.1 ± 48.8% and 33.6 ± 2.1%, respectively). On Day 4, the rate of PB+ embryos developing beyond the 4-cell stage was greater than that of PB− embryos (P < 0.05, 31.7 ± 3.9% and 14.1 ± 1.5%, respectively), and PB+ embryos had more cells than the PB− embryos (P < 0.05, 8.3 ± 0.4 and 6.0 ± 0.8 cells, respectively). On Day 6, a greater proportion of PB+ embryos developed to the blastocyst stage than did PB− embryos (P < 0.05, 34.6 ± 2.4% and 20.7 ± 2.8%, respectively). However, when the GV oocytes of the PB− group were not included in recalculations, there was no difference in blastocyst rates between M-I arrested and M-II oocytes (35.3 and 34.6%, respectively). The number of blastomere nuclei in embryos obtained from the PB+ group (52.0 ± 2.5) was greater than that from the PB− group (P < 0.05, 29.1 ± 2.8). The proportion of degenerated parts in the blastocysts, as determined by morphological appearance, was the same in the PB+ and PB− groups. Although the quality of PB+ embryos was enhanced as compared with that of the PB− group, the proportion of inner cell mass and trophectoderm cells in PB+ and PB− blastocysts did not differ (1:1.9 and 1:2.2, respectively). Chromosome analysis revealed that PB+ blastocysts had more diploidy (P < 0.05, 69.7%) than did PB− blastocysts (44.0%), whereas PB− blastocysts had more triploid cells (P < 0.05, 34.0%) than did PB+ oocytes (8.4%). These results indicate that pig oocytes arrested before the M-II stage (M-I oocytes) undergo cytoplasmic maturation during maturation culture and have the same ability to develop to blastocysts after IVF as M-II oocytes, but some of them resulted in degeneration or delayed development with poor embryo quality.  相似文献   

4.
为了提高异种间核移植重构胚的发育率,本研究以体内排放的奶山羊成熟卵为供胞质的受体细胞,以人、兔、波尔山羊等的异种或亚种体细胞的原代核移植(Primary Somatic Cell Nuclear Transfer,PSCNT)重构早胚(8-16细胞期)的卵裂球作供核体,观察经亚种或异种卵胞质体短期“修饰”的核再移植产生的继代(Secondary SCNT,SSCNT)重构胚的着床前发育潜能。结果:人、兔、波尔山羊的继代桑椹/囊胚发育率均显著地高于其PSCNT胚胎(人,14.81%VS.7.79%;兔,23.53%VS.12.50%;波尔羊,55.35%VS.24.53%);这些早胚的各阶段发育时程仍遵循供核体动物正常受精卵的发育时程。结果启示:奶山羊成熟卵胞质对异种体细胞核亦具一定的去分化能力,能支持重构胚发育到囊胚;异种重构胚的发育特征是由供体核所决定的;继代核移植几乎能够成倍提高异种间重构胚的着床前发育率,提示核的去分化完全是在母型信息主导的调控之下完成的,而进一步发育的时序似乎是由核决定的:成倍延长在含母型信息主导调控环境中的时间能成倍提高SCNT重构胚的着床前发育率。  相似文献   

5.
《Theriogenology》2008,69(9):1299-1304
The brilliant cresyl blue (BCB) test determines the activity of glucose-6-phosphate dehydrogenase (G6PDH); the activity of this enzyme is greatest in growing oocytes, but it declines as oocytes mature. The objective was to develop and evaluate this test for assessing development of buffalo oocytes (to select developmentally competent oocytes for increased in vitro embryo production). Oocytes were exposed to BCB stain diluted in mDPBS (DPBS with 0.4% BSA) for 90 min at 38.5 °C in a humidified air atmosphere; those with or without blue coloration of the cytoplasm were designated as BCB+ and BCB−, respectively. In Experiment 1, oocytes were exposed to 13, 26, or 39 μM BCB. There were fewer BCB+ oocytes after exposure to 13 μM BCB (10%) than after exposure to 26 or 39 μM BCB (57.2 and 61.8%; P < 0.05), but there was no significant difference among treatments for blastocyst production rate. In Experiment 2, the diameter of BCB+ oocytes (144.4 ± 4.2 μm; mean ± S.E.M.) was higher (P < 0.05) than that of BCB− oocytes (136.8 ± 4.6 μm). In Experiment 3, oocytes were allocated into three groups: control (immediately cultured); holding-control (kept in mDPBS for 90 min before cultured); and treatment-incubation (incubated with 26 μM BCB). After IVM, oocytes were fertilized in vitro and cultured on an oviductal monolayer. The nuclear maturation rate was higher (P < 0.05) in BCB+ (86.2%), control (83.4%) and holding-control (82.6%) oocytes than BCB− (59.2%) oocytes. The BCB+ oocytes yielded more blastocysts than control or holding-control oocytes (33.4, 20.2, and 21.0%, P < 0.05); blastocyst development was lowest in BCB− oocytes (5.2%). In conclusion, staining of buffalo oocytes with BCB before IVM may be used to select developmentally competent oocytes for increased in vitro embryo production.  相似文献   

6.
Microinjection of isolated mitochondria into oocytes is an effective method to introduce exogenous mitochondrial DNA. In nuclear transfer procedures in which donor cell mitochondria are transferred with nuclei into recipient oocytes; development and survival rates of reconstructed embryos may be also directly influenced by mitochondrial viability. Mitochondrial viability is dramatically affected by cell culture conditions, such as serum starvation prior to nuclear transfer. This study was conducted to examine the influence of exogenous mitochondria using bovine and mouse parthenogenetic models. Mitochondria were isolated from primary cells at confluency and after serum starvation. The bovine oocytes injected with serum-starved mitochondria showed lower rates of morula and blastocyst formation when compared to uninjected controls (P < 0.05). However, the developmental rates between non-starved mitochondria injection and controls were not different (P > 0.05). The murine oocytes injected with serum-starved mitochondria showed lower rates of development when compared with non-starved mitochondria and controls (P < 0.01). In contrast to mitochondria transfer, ooplasm transfer did not affect murine or bovine parthenogenetic development (P > 0.05). The overall results showed that injection of serum-starved mitochondria influenced parthenogenetic development of both bovine and murine oocytes. Our results illustrate that the somatic mitochondria introduction accompanying nuclei has the capacity to affect reconstructed embryo development; particularly when using serum-starved cells as donor cells.  相似文献   

7.
《Theriogenology》2009,71(9):1471-1477
Somatic cloning may enable the maintenance/expansion of the population of camels with the highest potential for milk production or the best racing performances. However, there have been no reports of embryonic or somatic nuclear transfer in camels. The aim of this study was to produce dromedary embryos by nuclear transfer using in vitro matured oocytes and two somatic cells from two sources (adult fibroblasts or granulosa cells). A total of 58 adult females were superstimulated by a single dose of eCG (3500 IU). Ten days later, their ovaries were collected postmortem. Cumulus–oocytes-complexes (COCs) were aspirated from stimulated follicles and were matured in vitro for 30 h. Fibroblasts (from live adult male) and granulosa cells (from slaughtered adult females) were used as donor karyoplasts and injected into mature enucleated dromedary oocytes.The cleavage rate was significantly higher (P < 0.05) for embryos reconstructed with fibroblasts (59%) versus those with granulosa cells (45%). However, there was no difference between the two groups in the proportion of cloned embryos reaching the blastocyst stage (fibroblasts: 14% vs. granulosa cells: 15%) or those that hatched (fibroblasts: 10% vs. granulosa cells: 12%). The viability of reconstructed dromedary embryos from the two sources of donor cells (fibroblasts; n = 5 vs. granulosa cells; n = 7) was examined by transferring them to synchronized recipients. Two females (fibroblasts: 1/5; 20%, granulosa cells: 1/7; 14%) were confirmed pregnant by ultrasonography at 15 and 25 days following transfer. Later, the pregnancies were followed by pregnancy empirical-symptoms. These two pregnancies were lost between 25 and 60 days following transfer, respectively.In conclusion, the present study shows for the first time that the development of dromedary NT embryos derived from either adult fibroblasts or granulosa cells can occur in vitro and the transfer of these cloned embryos to recipients can result in pregnancies.  相似文献   

8.
The efficiency of two cell types, namely adult fibroblasts, and amniotic fluid stem (AFS) cells as nuclear donor cells for somatic cell nuclear transfer by hand-made cloning in buffalo (Bubalus bubalis) was compared. The in vitro expanded buffalo adult fibroblast cells showed a typical “S” shape growth curve with a doubling time of 40.8 h and stained positive for vimentin. The in vitro cultured undifferentiated AFS cells showed a doubling time of 33.2 h and stained positive for alkaline phosphatase, these cells were also found positive for undifferentiated embryonic stem cell markers like OCT-4, NANOG and SOX-2, which accentuate their pluripotent property. Further, when AFS cells were exposed to corresponding induction conditions, these cells differentiated into osteogenic, adipogenic and chondrogenic lineages which was confirmed through alizaran, oil red O and alcian blue staining, respectively. Cultured adult fibroblasts and AFS cells of passages 10–15 and 8–12, respectively, were used as nuclear donors. A total of 94 embryos were reconstructed using adult fibroblast as donor cells with cleavage and blastocyst production rate of 62.8 ± 1.8 and 19.1 ± 1.5, respectively. An overall cleavage and blastocyst formation rate of 71.1 ± 1.2 and 29.9 ± 2.2 was obtained when 97 embryos were reconstructed using AFS cells as donor cells. There were no significant differences (P > 0.05) in reconstructed efficiency between the cloned embryos derived from two donor cells, whereas the results showed that there were significant differences (P < 0.05) in cleavage and blastocyst rates between the cloned embryos derived from two donor cell groups. Average total cell numbers for blastocyst generated using AFS cells (172.4 ± 5.8) was significantly (P < 0.05) higher than from adult fibroblasts (148.2 ± 6.1). This study suggests that the in vitro developmental potential of the cloned embryos derived from AFS cells were higher than that of the cloned embryos derived from adult fibroblasts in buffalo hand-made cloning.  相似文献   

9.
10.
The effect of the stage of the cell cycle of donor cells and recipient cytoplasts on the timing of DNA replication and the developmental ability in vitro of bovine nuclear transfer embryos was examined. Embryos were reconstructed by fusing somatic cells with unactivated recipient cytoplasts or with recipient cytoplasts that were activated 2 h before fusion. Regardless of whether recipient cytoplasts were unactivated or activated, the embryos that were reconstructed from donor cells at the G0 phase initiated DNA synthesis at 6-9 h postfusion (hpf). The timing of DNA synthesis was similar to that of parthenogenetic embryos, and was earlier than that of the G0 cells in cell culture condition. Most embryos that were reconstructed from donor cells at the G1/S phase initiated DNA synthesis within 6 hpf. The developmental rate of embryos reconstructed by a combination of G1/S cells and activated cytoplasts was higher than the rates of embryos in the other combination of donor cells and recipient cytoplasts. The results suggest that the initial DNA synthesis of nuclear transfer embryos is affected by the state of the recipient oocytes, and that the timing of initiation of the DNA synthesis depends on the donor cell cycle. Our results also suggest that the cell cycles of somatic cells synchronized in the G1/S phase and activated cytoplasts of recipient oocytes are well coordinated after nuclear transfer, resulting in high developmental rates of nuclear transfer embryos to the blastocyst stage in vitro.  相似文献   

11.
Interspecific hybrid embryos are useful models for the study of maternal-fetal interactions, transmission pattern of species-specific markers and parental contributions to growth and developmental potential of pre-attachment embryos. In an attempt to investigate the possibility of producing hybrid embryos of domestic cattle (Bos taurus) and water buffalo (Bubalus bubalis), cattle oocytes were exposed to buffalo sperm and buffalo oocytes were exposed to cattle sperm and the cleavage rate and the post-fertilisation features of hybrid embryos up to the blastocyst stage were compared with those of buffalo and cattle embryos. The cleavage rate in buffalo oocytes exposed to cattle sperm was low (40.8%), with only 8.8% of these hybrid embryos reaching the blastocyst stage. Cattle oocytes exposed to buffalo sperm showed 86.3% cleavage, while 25.9% of these attained the blastocyst stage. The speed of development of both types of hybrids was intermediate between that of cattle and buffalo embryos, with hatching occurring on day 7.5 in hybrid embryos, day 8-9 in cattle and day 7 in buffalo. The proportions of cells contributing to the trophectoderm and the inner cell mass were closer to those of the maternal species in both types of hybrid embryos. Our results indicate that cattle-water buffalo hybrid embryos produced using inter species gametes are capable of developing to advanced blastocyst stages and that their in vitro fate, and developmental potential, are influenced by the origin of the oocyte.  相似文献   

12.
13.
Nuclear-cytoplasmic incompatibilities are known to play a significant role in the developmental outcome of embryos produced by nuclear transfer, particularly when metaphase arrested oocytes are used as hosts for interphase donor nuclei. To further our understanding of how cell cycle coordination affects somatic cell cloning, somatic cells at different stages of the cell cycle were fused to host oocytes either before (metaphase II, M-II) or after (telophase II, T-II) activation. To obtain cells at different stages of the cell cycle, fetal fibroblast (FF) and granulosa cells (GC) were treated with roscovitine, an inhibitor of cyclin-dependent kinases (CDKs) resulting in a large percentage of cells in S/G(2)-phase. In contrast to the M-II group, which did better with confluent cells, embryos reconstructed with T-II cytoplasts resulted in higher rates of blastocyst formation when fused to cells recovered at 16-24 h after passage. Embryos reconstructed with FF treated with roscovitine and T-II cytoplasts (Rosc/T-II) resulted in similar blastocyst rate compared to those produced with confluent cells and M-II cytoplasts (Conf/M-II). Transfer of blastocysts to surrogate heifers resulted pregnancies and birth of healthy calves from Rosc/T-II and Conf/M-II reconstructed embryos. These results indicate that, when combined with nuclear donor cells at specific cell cycle stages, M-II and T-II bovine oocytes are similarly effective in supporting the reprogramming of somatic cell nuclei.  相似文献   

14.
Background aimsDonor-derived vertebral bone marrow (BM) has been proposed to promote chimerism in solid organ transplantation with cadaveric organs. Reports of successful weaning from immunosuppression in patients receiving directed donor transplants in combination with donor BM or blood cells and novel peri-transplant immunosuppression has renewed interest in implementing similar protocols with cadaveric organs.MethodsWe performed six pre-clinical full-scale separations to adapt vertebral BM preparations to a good manufacturing practice (GMP) environment. Vertebral bodies L4–T8 were transported to a class 10 000 clean room, cleaned of soft tissue, divided and crushed in a prototype bone grinder. Bone fragments were irrigated with medium containing saline, albumin, DNAse and gentamicin, and strained through stainless steel sieves. Additional cells were eluted after two rounds of agitation using a prototype BM tumbler.ResultsThe majority of recovered cells (70.9 ± 14.1%, mean ± SD) were eluted directly from the crushed bone, whereas 22.3% and 5.9% were eluted after the first and second rounds of tumbling, respectively. Cells were pooled and filtered (500, 200 μm) using a BM collection kit. Larger lumbar vertebrae yielded about 1.6 times the cells of thoracic vertebrae. The average product yielded 5.2 ± 1.2 × 1010 total cells, 6.2 ± 2.2 × 108 of which were CD45+ CD34+. Viability was 96.6 ± 1.9% and 99.1 ± 0.8%, respectively. Multicolor flow cytometry revealed distinct populations of CD34+ CD90+ CD117dim hematopoietic stem cells (15.5 ± 7.5% of the CD34 + cells) and CD45? CD73+ CD105+ mesenchymal stromal cells (0.04 ± 0.04% of the total cells).ConclusionsThis procedure can be used to prepare clinical-grade cells suitable for use in human allotransplantation in a GMP environment.  相似文献   

15.
The aim of this study was to optimize electrofusion conditions for generating porcine tetraploid(4n)embryos and produce tetraploid/diploid(4n/2n)chimeric embryos.Different electric feld intensities were tested and 2 direct current(DC)pulses of 0.9 kV/cm for 30 ls was selected as the optimum condition for electrofusion of 2-cell embryos to produce 4n embryos.The fusion rate of 2-cell embryos and the development rate to blastocyst of presumably 4n embryos,reached85.4%and 28.5%,respectively.68.18%of the fused embryos were found to be 4n as demonstrated by fluorescent in situ hybridization(FISH).Although the number of blastomeres in 4n blastocysts was signifcantly lower than in 2n blastocysts(P<0.05),there was no signifcant difference in developmental rates of blastocysts between 2n and 4n embryos(P>0.05),suggesting that the blastocyst forming capacity in 4n embryos is similar to those in 2n embryos.Moreover,4n/2n chimeric embryos were obtained by aggregation of 4n and 2n embryos.We found that the developmental rate and cell number of blastocysts of 4-cell(4n)/4-cell(2n)chimeric embryos were signifcantly higher than those of 2-cell(4n)/4-cell(2n),4-cell(4n)/8-cell(2n),4-cell(4n)/2-cell(2n)chimeric embryos(P<0.05).Consistent with mouse chimeras,the majority of 4n cells contribute to the trophectoderm(TE),while the 2n cells are mainly present in the inner cell mass(ICM)of porcine4n/2n chimeric embryos.Our study established a feasible and effcient approach to produce porcine4n embryos and 4n/2n chimeric embryos.  相似文献   

16.
Interspecies hybridization of bovids occurs between domestic cattle and at least three other species; American bison (Bison bison), yak (Bos grunniens) and banteng (Bos banteng). Birth of a cattle × buffalo (Bubalus bubalis) hybrid has reportedly occurred in Russia and in China, but these reports were not authenticated. Such hybrids could be important in improving livestock production and management of diseases that impede production in tropical Africa. This study investigated hybridization between cattle and its closest African wild bovid relative, the African buffalo (Syncerus caffer caffer). In an attempt to produce cattle × buffalo hybrid embryos in vitro, matured cattle oocytes were subjected to a standard in vitro fertilization (IVF) procedure with either homologous cattle (n = 1166 oocytes) or heterologous African buffalo (n = 1202 oocytes) frozen-thawed epididymal sperm. After IVF, 67.2% of the oocytes inseminated with the homologous cattle sperm cleaved. In contrast, fertilization with buffalo sperm resulted in only a 4.6% cleavage rate. The cleavage intervals were also slower in hybrid embryos than in the IVF-derived cattle embryos. Of the cleaved homologous cattle embryos 52.2% progressed to the morula stage compared with 12.7% for the buffalo hybrid embryos. No hybrid embryos developed beyond the early morula stage, while 40.1% of the cleaved cattle × cattle embryos developed to the blastocyst stage. Transfer of buffalo hybrid IVF embryos to domestic cattle surrogates resulted in no pregnancies at 60 days post-transfer. This study indicates that interspecies fertilization of cattle oocytes with African buffalo epididymal sperm can occur in vitro, and that a barrier to hybridization occurs in the early stages of embryonic development. Chromosomal disparity is likely the cause of the fertilization abnormalities, abnormal development and subsequent arrest impairing the formation of hybrid embryos beyond the early morula stage. Transfer of the buffalo hybrid embryos did not rescue the embryos from development arrest.  相似文献   

17.
Interspecies nuclear transfer is an invalulable tool for studying nucleus-cytoplasm interactions; and at the same time, it provides a possible alternative to clone endangered animals whose oocytes are difficult to obtain. In the present study, we investigated the possibility of cloning Tibetan antelope embryos using abattoir-derived caprine oocytes as recipients. Effects of culture conditions, enucleation timing, and donor cell passages on the in vitro development of Tibetan antelope-goat cloned embryos were studied. Maternal to zygotic transition timing of interspecies Tibetan antelope embryos was also investigated using two types of cloned embryos, Tibetan antelope-rabbit and Tibetan antelope-goat embryos. Our results indicate that: (1) goat oocyte is able to reprogram somatic cells of different genus and supports development to blastocyst in vitro. (2) Coculture system supported the development of Tibetan antelope-goat embryos to blastocyst rate stage (4.0%), while CR1aa alone did not. (3) When MII phase enucleated caprine cytoplast and TII phase enucleated caprine cytoplast were used as recipients, the fusion rate and blastocyst rate of hybrid embryos were not statistically different (73.9% vs. 67.4%; 4.0% vs. 1.1%). (4) When donor cells at 3-8 passages were used, 2.9% hybrid embryos developed to blastocysts, while none developed to blastocysts when cells at 10-17 passages were used. (5) There may be a morula-to-blastocyst block for Tibetan antelope-goat, while there may be an 8- to 16-cell block for Tibetan antelope-rabbit embryos.  相似文献   

18.
《Reproductive biology》2014,14(4):249-256
A total of 341 fertilized and 37 unfertilized oocytes from 63 intracytoplasmic sperm injection (ICSI) treatment cycles were included for retrospective assessment using the Embryoscope™ time-lapse video system. The second polar body (pb2) extrusion occurred at 2.9 ± 0.1 h (range 0.70–10.15 h) relative to sperm injection. All oocytes reduced in size following sperm injection (p < 0.05) with shrinkage ceasing after 2 h in the unfertilized and at pb2 extrusion in the fertilized oocytes. Pb2 extrusion was significantly delayed for women aged >38 years compared to those <35 years (3.4 ± 0.2 vs. 2.8 ± 0.1, p < 0.01) or 35–38 years (3.4 ± 0.2 vs. 2.8 ± 0.1, p < 0.01), but timing was not related to the Day 3 morphological grades (1–4) of subsequent embryos (2.9 ± 0.1, 2.9 ± 0.1, 2.8 ± 0.2 and 3.0 ± 0.1; p > 0.05 respectively). A shorter time of first cleavage division relative to either sperm injection or pb2 extrusion is associated with both top grade (AUC = 0.596 or 0.601, p = 0.006 or 0.004) and usable embryos (AUC = 0.638 or 0.632, p = 0.000 respectively) on Day 3. In summary, (i) pb2 of human oocytes extrudes at various times following sperm injection, (ii) the timing of pb2 extrusion is significantly delayed when female age >38 years, but not related to subsequent embryo development, (iii) all human oocytes reduce in size following sperm injection, (iv) completion of pb2 extrusion in the fertilized oocytes is a pivotal event in terminating shrinkage of the vitellus, and (v) time to first cleavage division either from sperm injection or pb2 extrusion is a significant predictive marker for embryo quality on Day 3.  相似文献   

19.
It is the point at issue in intraspecies nuclear transfer whether quiescence is necessary for development of nuclear transfer reconstructed embryos. In the interspecies nuclear transfer, some reports have proved that quiescent cell is able to support preimplantation development of the interspecies reconstructed embryos. Are non-quiescent cells able to support preimplantation development of the interspecies reconstructed embryos? We used non-quiescent somatic cells from C57BL/6 mice and giant pandas as donors to transfer into enucleated rabbit oocytes. After electrofusion (the electrofusion rates were 62.2% and 71.6%, respectively) and electrical activation, 5.1% of those mouse-rabbit reconstructed embryos developed to blastocyst in vitro, and 4.2% of panda-rabbit reconstructed embryos developed to blastocyst after transferring into ligated rabbit oviduct. These results indicate that non-quiescent cell from C57BL/6 mouse and giant panda could be dedifferentiated in enucleated rabbit oocytes and support early embryo development.  相似文献   

20.
未经休眠处理的体细胞用于异种核移植   总被引:1,自引:0,他引:1  
自“多莉”诞生以来,在全世界掀起了一场体细胞克隆的浪潮,许多体细胞克隆动物,如小鼠、山羊、牛、猪等纷纷问世。围绕体细胞克隆的供体细胞周期问题,学术界存在两种不同的观点,一是Wilmut等认为体细胞必须经过休眠处理,使细胞停滞在G0/G1期,或者采用以G0/G1期为主的活体细胞作为供体,这是克隆成功的关键,这一方面的报道已有很多。第二是Cibelli等认为不必对细胞作  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号