首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 388 毫秒
1.
Many Gram-negative bacteria use the multi-protein type II secretion system (T2SS) to selectively translocate virulence factors from the periplasmic space into the extracellular environment. In Vibrio cholerae the T2SS is called the extracellular protein secretion (Eps) system,which translocates cholera toxin and several enzymes in their folded state across the outer membrane. Five proteins of the T2SS, the pseudopilins, are thought to assemble into a pseudopilus, which may control the outer membrane pore EpsD, and participate in the active export of proteins in a “piston-like” manner. We report here the 2.0 Å resolution crystal structure of an N-terminally truncated variant of EpsH, a minor pseudopilin from Vibrio cholerae. While EpsH maintains an N-terminal α-helix and C-terminal β-sheet consistent with the type 4a pilin fold, structural comparisons reveal major differences between the minor pseudopilin EpsH and the major pseudopilin GspG from Klebsiella oxytoca: EpsH contains a large β-sheet in the variable domain, where GspG contains an α-helix. Most importantly, EpsH contains at its surface a hydrophobic crevice between its variable and conserved β-sheets, wherein a majority of the conserved residues within the EpsH family are clustered. In a tentative model of a T2SS pseudopilus with EpsH at its tip, the conserved crevice faces away from the helix axis. This conserved surface region may be critical for interacting with other proteins from the T2SS machinery.  相似文献   

2.
Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-β topology. N-terminal β-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD(N0) interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.  相似文献   

3.
The type II secretion system (T2SS) secretes enzymes and toxins across the outer membrane of Gram-negative bacteria. The precise assembly of T2SS, which consists of at least 12 core-components called Gsp, remains unclear. The outer membrane secretin, GspD, forms the channels, through which folded proteins are secreted, and interacts with the inner membrane component, GspC. The periplasmic regions of GspC and GspD consist of several structural domains, HR(GspC) and PDZ(GspC), and N0(GspD) to N3(GspD), respectively, and recent structural and functional studies have proposed several interaction sites between these domains. We used cysteine mutagenesis and disulfide bonding analysis to investigate the organization of GspC and GspD protomers and to map their interaction sites within the secretion machinery of the plant pathogen Dickeya dadantii. At least three distinct GspC-GspD interactions were detected, and they involve two sites in HR(GspC), two in N0(GspD), and one in N2(GspD). None of these interactions occurs through static interfaces because the same sites are also involved in self-interactions with equivalent neighboring domains. Disulfide self-bonding of critical interaction sites halts secretion, indicating the transient nature of these interactions. The secretion substrate diminishes certain interactions and provokes an important rearrangement of the HR(GspC) structure. The T2SS components OutE/L/M affect various interaction sites differently, reinforcing some but diminishing the others, suggesting a possible switching mechanism of these interactions during secretion. Disulfide mapping shows that the organization of GspD and GspC subunits within the T2SS could be compatible with a hexamer of dimers arrangement rather than an organization with 12-fold rotational symmetry.  相似文献   

4.
The Type II Secretion System (T2SS) is a molecular machine that drives the secretion of fully-folded protein substrates across the bacterial outer membrane. A key element in the machinery is the secretin: an integral, multimeric outer membrane protein that forms the secretion pore. We show that three distinct forms of T2SSs can be distinguished based on the sequence characteristics of their secretin pores. Detailed comparative analysis of two of these, the Klebsiella-type and Vibrio-type, showed them to be further distinguished by the pilotin that mediates their transport and assembly into the outer membrane. We have determined the crystal structure of the novel pilotin AspS from Vibrio cholerae, demonstrating convergent evolution wherein AspS is functionally equivalent and yet structurally unrelated to the pilotins found in Klebsiella and other bacteria. AspS binds to a specific targeting sequence in the Vibrio-type secretins, enhances the kinetics of secretin assembly, and homologs of AspS are found in all species of Vibrio as well those few strains of Escherichia and Shigella that have acquired a Vibrio-type T2SS.  相似文献   

5.
6.
Type II secretion system (T2SS) is a multiprotein trans‐envelope complex that translocates fully folded proteins through the outer membrane of Gram‐negative bacteria. Although T2SS is extensively studied in several bacteria pathogenic for humans, animals and plants, the molecular basis for exoprotein recruitment by this secretion machine as well as the underlying targeting motifs remain unknown. To address this question, we used bacterial two‐hybrid, surface plasmon resonance, in vivo site‐specific photo‐cross‐linking approaches and functional analyses. We showed that the fibronectin‐like Fn3 domain of exoprotein PelI from Dickeya dadantii interacts with four periplasmic domains of the T2SS components GspD and GspC. The interaction between exoprotein and the GspC PDZ domain is positively modulated by the GspD N1 domain, suggesting that exoprotein secretion is driven by a succession of synergistic interactions. We found that an exposed 9‐residue‐long loop region of PelI interacts with the GspC PDZ domain. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches reveal the occurrence of equivalent secretion motifs in other exoproteins, suggesting a plausible general mechanism of exoprotein recruitment by the T2SS.  相似文献   

7.
Vibrio cholerae colonize the small intestine where they secrete cholera toxin, an ADP-ribosylating enzyme that is responsible for the voluminous diarrhea characteristic of cholera disease. The genes encoding cholera toxin are located on the genome of the filamentous bacteriophage, CTXφ, that integrates as a prophage into the V. cholerae chromosome. CTXφ infection of V. cholerae requires the toxin-coregulated pilus and the periplasmic protein TolA. This infection process parallels that of Escherichia coli infection by the Ff family of filamentous coliphage. Here we demonstrate a direct interaction between the N-terminal domain of the CTXφ minor coat protein pIII (pIII-N1) and the C-terminal domain of TolA (TolA-C) and present x-ray crystal structures of pIII-N1 alone and in complex with TolA-C. The structures of CTXφ pIII-N1 and V. cholerae TolA-C are similar to coliphage pIII-N1 and E. coli TolA-C, respectively, yet these proteins bind via a distinct interface that in E. coli TolA corresponds to a colicin binding site. Our data suggest that the TolA binding site on pIII-N1 of CTXφ is accessible in the native pIII protein. This contrasts with the Ff family phage, where the TolA binding site on pIII is blocked and requires a pilus-induced unfolding event to become exposed. We propose that CTXφ pIII accesses the periplasmic TolA through retraction of toxin-coregulated pilus, which brings the phage through the outer membrane pilus secretin channel. These data help to explain the process by which CTXφ converts a harmless marine microbe into a deadly human pathogen.  相似文献   

8.
The type II secretion system (T2SS) functions as a transport mechanism to translocate proteins from the periplasm to the extracellular environment. The ExeA homologue in Aeromonas hydrophila, GspA(Ah), is an ATPase that interacts with peptidoglycan and forms an inner membrane complex with the ExeB homologue (GspB(Ah)). The complex may be required to generate space in the peptidoglycan mesh that is necessary for the transport and assembly of the megadalton-sized ExeD homologue (GspD(Ah)) secretin multimer in the outer membrane. In this study, the requirement for GspAB in the assembly of the T2SS secretin in Aeromonas and Vibrio species was investigated. We have demonstrated a requirement for GspAB in T2SS assembly in Aeromonas salmonicida, similar to that previously observed in A. hydrophila. In the Vibrionaceae species Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus, gspA mutations significantly decreased assembly of the secretin multimer but had minimal effects on the secretion of T2SS substrates. The lack of effect on secretion of the mutant of gspA of V. cholerae (gspA(Vc)) was explained by the finding that native secretin expression greatly exceeds the level needed for efficient secretion in V. cholerae. In cross-complementation experiments, secretin assembly and secretion in an A. hydrophila gspA mutant were partially restored by the expression of GspAB from V. cholerae in trans, further suggesting that GspAB(Vc) performs the same role in Vibrio species as GspAB(Ah) does in the aeromonads. These results indicate that the GspAB complex is functional in the assembly of the secretin in Vibrio species but that a redundancy of GspAB function may exist in this genus.  相似文献   

9.
The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin''s secretion. Here, we report two mutations in LT''s B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC''s T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species.Gram-negative bacteria have evolved a number of methods to secrete proteins into the extracellular milieu, with at least six specific secretion systems currently described (14, 30). Type II secretion (T2S), or the main terminal branch of the general secretory pathway, is a feature of a number of proteobacteria and has been shown to be required for pathogenesis and maintenance of environmental niches in a large number of species (5). The T2S system is a multiprotein complex of 12 to 15 components that spans the inner and outer membranes, allowing for the controlled release of certain folded proteins that have been directed to the periplasm through the Sec or Tat machinery (21). Aside from providing a means of exporting freely released virulence factors from plant, animal, and human pathogens (5), the T2S system has been shown to export surface-associated virulence factors (18), fimbrial components (46), outer membrane cytochromes (36), and a surfactant required for sliding motility in Legionella pneumophila (39), among other substrates.While an increasing number of studies have focused on understanding the structure and function of the components of the T2S system itself, little is known about what identifies a periplasmic protein as a substrate for secretion (21, 32). Because proteins secreted from the same bacterial species need not share any obvious structural homology, it is not even clear how much of a T2S substrate interacts with the secretion machinery (32). Analysis of two similar substrates that can each be secreted by the T2S systems of two distinct species would provide information about species-specific identification of T2S substrates and, by extension, the nature of the “secretion motif” identifying those substrates. Heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae represent one such pair of substrates.ETEC and V. cholerae are enteric pathogens causing significant morbidity and mortality worldwide (33). The causative agents of traveler''s diarrhea and cholera, respectively, these two pathogens share a number of similarities, including the nature of their disease symptoms (38). Each pathogen secretes an AB5 toxin important for colonization and the induction of water and electrolyte efflux from intestinal epithelial cells (1, 29). These toxins, LT and CT, are both encoded by two-gene operons. After sec-dependent transport to the periplasm, holotoxin formation occurs spontaneously (13), with one catalytic A subunit (LTA or CTA) assembling with five B subunits (LTB or CTB), which are responsible for the binding properties of the toxins. Export of fully folded and assembled LT or CT is then accomplished by the T2S system (34, 40). In ETEC, this system is encoded by gspC to -M (40), while in V. cholerae, these genes are found in the eps operon (34).LT and CT are very similar in structure, sharing approximately 80% sequence homology and 83% identity in the mature B subunit (16, 24). ETEC is thought to have acquired the genes for CT through horizontal transfer, with the toxins evolving over time to possess slight differences (45). As such, these toxins share the same primary host receptor, the monosialoganglioside GM1, and catalyze the same ADP-ribosylation reaction within host cells (38). However, LT is able to bind other host sphingolipids in addition to GM1 and to interact with sugar residues from the A-type blood antigen, which CT cannot bind (16, 41). Both LT and CT are able to associate with sugar residues in lipopolysaccharide (LPS) on the surface of E. coli cells (17). Binding to each of these substrates can be impaired by point mutation (26, 43).In this study, we report point mutations impairing the release of LT from ETEC and CT from V. cholerae. We analyzed the specificity of the defects in substrate recognition by comparing the effects of substituting charged and neutral residues in key regions of LTB and CTB. To confirm that the identified mutations resulted specifically in a secretion defect, we tested the effect of the mutations on (i) ligand binding by each toxin, (ii) toxin stability, and (iii) formation of secretion-competent B-subunit pentamers. By introducing comparable mutations into both toxins, including one previously reported to impair the secretion of CT (6), and exchanging toxin substrates between the two species, we have revealed species-dependent differences in T2S substrate recognition. Although wild-type LT and CT can be heterologously expressed and secreted from V. cholerae and ETEC, respectively, the substrate residues identified by the secretion machinery in each species are distinct. Together, our results demonstrate that highly homologous T2S substrates are recognized in different ways when secreted by two distinct systems.  相似文献   

10.
The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria) and a eukaryote (the social amoeba Dictyostelium discoideum). Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.  相似文献   

11.
Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. For V. cholerae to colonize the intestinal epithelium, accessory toxins such as the multifunctional autoprocessing repeats-in-toxin (MARTXVc) toxin are required. MARTX toxins are composite toxins comprised of arrayed effector domains that carry out distinct functions inside the host cell. Among the three effector domains of MARTXVc is the Rho inactivation domain (RIDVc) known to cause cell rounding through inactivation of small RhoGTPases. Using alanine scanning mutagenesis in the activity subdomain of RIDVc, four residues, His-2782, Leu-2851, Asp-2854, and Cys-3022, were identified as impacting RIDVc function in depolymerization of the actin cytoskeleton and inactivation of RhoA. Tyr-2807 and Tyr-3015 were identified as important potentially for forming the active structure for substrate contact but are not involved in catalysis or post translational modifications. Finally, V. cholerae strains modified to carry a catalytically inactive RIDVc show that the rate and efficiency of MARTXVc actin cross-linking activity does not depend on a functional RIDVc, demonstrating that these domains function independently in actin depolymerization. Overall, our results indicate a His-Asp-Cys catalytic triad is essential for function of the RID effector domain family shared by MARTX toxins produced by many Gram-negative bacteria.  相似文献   

12.
The causative agent of cholera, Vibrio cholerae, regulates its diverse virulence factors to thrive in the human small intestine and environmental reservoirs. Among this pathogen’s arsenal of virulence factors is the tightly regulated type VI secretion system (T6SS). This system acts as an inverted bacteriophage to inject toxins into competing bacteria and eukaryotic phagocytes. V. cholerae strains responsible for the current 7th pandemic activate their T6SS within the host. We established that T6SS-mediated competition occurs upon T6SS activation in the infant mouse, and that this system is functional under anaerobic conditions. When investigating the intestinal host factors mucins (a glycoprotein component of mucus) and bile for potential regulatory roles in controlling the T6SS, we discovered that once mucins activate the T6SS, bile acids can further modulate T6SS activity. Microbiota modify bile acids to inhibit T6SS-mediated killing of commensal bacteria. This interplay is a novel interaction between commensal bacteria, host factors, and the V. cholerae T6SS, showing an active host role in infection.  相似文献   

13.
The type VI secretion system (T6SS) of Gram-negative bacteria has been implicated in microbial competition; however, which components serve purely structural roles, and which serve as toxic effectors remains unresolved. Here, we present evidence that VgrG-3 of the Vibrio cholerae T6SS has both structural and toxin activity. Specifically, we demonstrate that the C-terminal extension of VgrG-3 acts to degrade peptidoglycan and hypothesize that this assists in the delivery of accessory T6SS toxins of V. cholerae. To avoid self-intoxication, V. cholerae expresses an anti-toxin encoded immediately downstream of vgrG-3 that inhibits VgrG-3-mediated lysis through direct interaction.  相似文献   

14.
The primary virulence factor of Vibrio cholerae, cholera toxin (CT), initiates a pathway in epithelial cells that leads to the severe diarrhoea characteristic of cholera. Secreted CT binds to GM1 on the surface of host cells to facilitate internalisation. Many bacterial toxins, including CT, have been shown to be additionally delivered via outer membrane vesicles (OMVs). A fraction of the closely related heat labile toxin produced by enterotoxigenic Escherichia coli has been demonstrated to reside on the surface of OMVs, where it binds GM1 to facilitate OMV internalisation by host cells. In this work, we investigated whether OMV‐associated CT is likewise trafficked to host cells in a GM1‐dependent mechanism. We demonstrated that a majority of CT is secreted in its OMV‐associated form and is located exclusively inside the vesicle. Therefore, the toxin is unable to bind GM1 on the host cell surface, and the OMVs are trafficked to the host cells in a GM1‐independent mechanism. These findings point to a secondary, noncompeting mechanism for secretion and delivery of CT, beyond its well‐studied secretion via a Type II secretion system and underscore the importance of focusing future studies on understanding this GM1‐independent delivery mechanism to fully understand Vibrio cholerae pathogenesis.  相似文献   

15.
Type II secretion systems (T2SS) translocate virulence factors from the periplasmic space of many pathogenic bacteria into the extracellular environment. The T2SS of Vibrio cholerae and related species is called the extracellular protein secretion (Eps) system that consists of a core of multiple copies of 11 different proteins. The pseudopilins, EpsG, EpsH, EpsI, EpsJ and EpsK, are five T2SS proteins that are thought to assemble into a pseudopilus, which is assumed to interact with the outer membrane pore, and may actively participate in the export of proteins. We report here biochemical evidence that the minor pseudopilins EpsI and EpsJ from Vibrio species interact directly with one another. Moreover, the 2.3 Å resolution crystal structure of a complex of EspI and EpsJ from Vibrio vulnificus represents the first atomic resolution structure of a complex of two different pseudopilin components from the T2SS. Both EpsI and EpsJ appear to be structural extremes within the family of type 4a pilin structures solved to date, with EpsI having the smallest, and EpsJ the largest, “variable pilin segment” seen thus far. A high degree of sequence conservation in the EpsI:EpsJ interface indicates that this heterodimer occurs in the T2SS of a large number of bacteria. The arrangement of EpsI and EpsJ in the heterodimer would correspond to a right-handed helical character of proteins assembled into a pseudopilus.  相似文献   

16.
Pathogenic non-O1/non-O139 Vibrio cholerae strains can cause sporadic outbreaks of cholera worldwide. In this study, multilocus sequence typing (MLST) of seven housekeeping genes was applied to 55 non-O1/non-O139 isolates from clinical and environmental sources. Data from five published O1 isolates and 17 genomes were also included, giving a total of 77 isolates available for analysis. There were 66 sequence types (STs), with the majority being unique, and only three clonal complexes. The V. cholerae strains can be divided into four subpopulations with evidence of recombination among the subpopulations. Subpopulations I and III contained predominantly clinical strains. PCR screening for virulence factors including Vibrio pathogenicity island (VPI), cholera toxin prophage (CTXΦ), type III secretion system (T3SS), and enterotoxin genes (rtxA and sto/stn) showed that combinations of these factors were present in the clinical isolates with 85.7% having rtxA, 51.4% T3SS, 31.4% VPI, 31.4% sto/stn (NAG-ST) and 11.4% CTXΦ. These factors were also present in environmental isolates but at a lower frequency. Five strains previously mis-identified as V. cholerae serogroups O114 to O117 were also analysed and formed a separate population with V. mimicus. The MLST scheme developed in this study provides a framework to identify sporadic cholera isolates by genetic identity.  相似文献   

17.
Vibrio cholerae is a diverse species of Gram-negative bacteria, commonly found in the aquatic environment and the causative agent of the potentially deadly disease cholera. These bacteria employ a type VI secretion system (T6SS) when they encounter prokaryotic and eukaryotic competitors. This contractile puncturing device translocates a set of effector proteins into neighboring cells. Translocated effectors are toxic unless the targeted cell produces immunity proteins that bind and deactivate incoming effectors. Comparison of multiple V. cholerae strains indicates that effectors are encoded in T6SS effector modules on mobile genetic elements. We identified a diverse group of chimeric T6SS adaptor proteins required for the translocation of diverse effectors encoded in modules. An example for a T6SS effector that requires T6SS adaptor protein 1 (Tap-1) is TseL found in pandemic V. cholerae O1 serogroup strains and other clinical isolates. We propose a model in which Tap-1 is required for loading TseL onto the secretion apparatus. After T6SS-mediated TseL export is completed, Tap-1 is retained in the bacterial cell to load other T6SS machines.  相似文献   

18.
The type VI secretion system (T6SS) is a proteinaceous weapon used by many Gram-negative bacteria to deliver toxins into adjacent target cells. Vibrio cholerae, the bacterium responsible for the fatal water-borne cholera disease, uses the T6SS to evade phagocytic eukaryotes, cause intestinal inflammation, and compete against other bacteria with toxins that disrupt lipid membranes, cell walls and actin cytoskeletons. The control of T6SS genes varies among V. cholerae strains and typically includes inputs from external signals and cues, such as quorum sensing and chitin availability. In the following review, we highlight the repertoire of toxic T6SS effectors and the diverse genetic regulation networks among different isolates of V. cholerae. Finally, we discuss the roles played by the T6SS of V. cholerae in both natural environments and hosts.  相似文献   

19.
The type II secretion complex exports folded proteins from the periplasm to the extracellular milieu. It is used by the pathogenic bacterium Vibrio cholerae to export several proteins, including its major virulence factor, cholera toxin. The pseudopilus is an essential component of the type II secretion system and likely acts as a piston to push the folded proteins across the outer membrane through the secretin pore. The pseudopilus is composed of the major pseudopilin, EpsG, and four minor pseudopilins, EpsH, EpsI, EpsJ and EpsK. We determined the x-ray crystal structure of the head domain of EpsH at 1.59 Å resolution using molecular replacement with the previously reported EpsH structure, 2qv8, as the template. Three additional N-terminal amino acids present in our construct prevent an artifactual conformation of residues 160–166, present in one of the two monomers of the 2qv8 structure. Additional crystal contacts stabilize a long flexible loop comprised of residues 104–135 that is more disordered in the 2qv8 structure but is partially observed in our structure in very different positions for the two EpsH monomers in the asymmetric unit. In one of the conformations the loop is highly extended. Modeling suggests the highly charged loop is capable of contacting EpsG and possibly secreted protein substrates, suggesting a role in specificity of pseudopilus assembly or secretion function.  相似文献   

20.
Gram-negative bacteria have evolved several highly dedicated pathways for extracellular protein secretion, including the type II secretion (T2S) system. Since substrates secreted via the T2S system include both virulence factors and degradative enzymes, this secretion system is considered a major survival mechanism for pathogenic and environmental species. Previous analyses revealed that the T2S system mediates the export of ≥20 proteins in Vibrio cholerae, a human pathogen that is indigenous to the marine environment. Here we demonstrate a new role in biofilm formation for the V. cholerae T2S system, since wild-type V. cholerae was found to secrete the biofilm matrix proteins RbmC, RbmA, and Bap1 into the culture supernatant, while an isogenic T2S mutant could not. In agreement with this finding, the level of biofilm formation in a static microtiter assay was diminished in T2S mutants. Moreover, inactivation of the T2S system in a rugose V. cholerae strain prevented the development of colony corrugation and pellicle formation at the air-liquid interface. In contrast, extracellular secretion of the exopolysaccharide VPS, an essential component of the biofilm matrix, remained unaffected in the T2S mutants. Our results indicate that the T2S system provides a mechanism for the delivery of extracellular matrix proteins known to be important for biofilm formation by V. cholerae. Because the T2S system contributes to the pathogenicity of V. cholerae by secreting proteins such as cholera toxin and biofilm matrix proteins, elucidation of the molecular mechanism of T2S has the potential to lead to the development of novel preventions and therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号