首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt stress is one of the most important abiotic stress factors affecting plant growth and productivity in natural ecosystems. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early (within 72 h) salt stress response in leaves and roots. To this purpose, we subjected three Brassicaceae species, namely two halophytes—Cakile maritima and Thellungiella salsuginea—and a glycophyte—Arabidopsis thaliana— to short-term salt stress (400 mM NaCl). The results indicate that the halophytes showed a differential osmotic and ionic response together with an early and transient oxidative burst, which was characterized by enhanced hydrogen peroxide levels and subsequent activation of antioxidant defenses in both leaves and roots. In addition, the halophytes displayed enhanced accumulation of abscisic acid, jasmonic acid (JA) and ACC (aminocyclopropane-1-carboxylic acid, the precursor of ethylene) in leaves and roots, as compared to A. thaliana under salt stress. Moreover, the halophytes showed enhanced expression of ethylene response factor1 (ERF1), the convergence node of the JA and ethylene signaling pathways in both leaves and roots upon exposure to salt stress. In conclusion, we show that the halophytes C. maritima and T. salsuginea experience an early oxidative burst, improved antioxidant defenses and hormonal response not only in leaves but also in roots, in comparison to the glycophyte A. thaliana. This differential signaling response converging, at least in part, into increased ERF1 expression in both above- and underground tissues seems to underlay, at least in part, the enhanced tolerance of the two studied halophytes to salt stress.  相似文献   

2.
The present study investigates the regulatory role of exogenous selenium (Se) in the antioxidant defense and methylglyoxal (MG) detoxification systems in rapeseed seedlings exposed to salt stress. Twelve-day-old seedlings, grown in Petri dishes, were supplemented with selenium (25 μM Na2SeO4) and salt (100 and 200 mM NaCl) separately and in combination, and further grown for 48 h. The ascorbate (AsA) content of the seedlings decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) increased with an increase in the level of salt stress, while the GSH/GSSG ratio decreased. In addition, the ascorbate peroxidase (APX) and glutathione S-transferase (GST) activity increased significantly with increased salt concentration (both at 100 and 200 mM NaCl), while glutathione peroxidase (GPX) activity increased only at moderate salt stress (100 mM NaCl). Glutathione reductase (GR) activity remained unchanged at 100 mM NaCl, while it was decreased under severe (200 mM NaCl) salt stress. Monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, whereas a sharp decrease of these activities was observed under severe salt stress (200 mM NaCl). Concomitant increases in the levels of H2O2 and lipid peroxidation (MDA) were also measured. Exogenous Se treatment alone had little effect on the non-enzymatic and enzymatic components. However, further investigation revealed that Se treatment had a synergistic effect: in salt-stressed seedlings, it increased the AsA and GSH contents; GSH/GSSG ratio; and the activities of APX, MDHAR, DHAR, GR, GST, GPX, CAT, Gly I, and Gly II. As a result, addition of Se in salt-stressed seedlings led to a reduction in the levels of H2O2 and MDA as compared to salt stress alone. These results suggest that the exogenous application of Se rendered the plants more tolerant to salt stress-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

3.

In this study, antioxidant processes were searched for in macrophyte duckweed to investigate tolerance mechanisms in this species against oxidative damage caused by salinity stress. Biochemical and histological analyses were performed on four Lemna aequinoctialis clones grown in Schenk-Hildebrandt medium, 0.5 × SH, supplemented with 1% sucrose liquid medium containing or not containing NaCl in different NaCl concentrations (0, 25 and 50 mM). For most clones, the salt stress effects caused growth inhibition and antioxidant responses at 50 mM NaCl. Also, starch and reducing sugar accumulations were increased with salt, whereas the photosynthetic pigment content was reduced in clone L. aequinoctialis 5569. The plant growth inhibition reflects the oxidative stress shown by the significant increase in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. In the L. aequinoctialis 5568 clone, with the highest MDA levels, no antioxidant enzymatic activity was observed. The L. aequinoctialis 5570 clone presented higher ascorbate peroxidase and catalase activities in parallel, indicating that the efficiency of the defence mechanism relies on synchrony between such enzyme activities toward successive elimination of reactive oxygen species and resulting in the assurance of some level of protection of the metabolism from oxidative damage. Considering the moderate salt stress (25 mM), the maintenance of MDA content and small growth inhibition associated with the high starch production suggested the acclimation efficiency of L. aequinoctialis 5570 and 5567 clones, indicating that they may be suitable for cultivation under moderate saline conditions, serving as biofuel feedstock. In addition, this study demonstrates great intraspecific phenotypic plasticity of duckweed, L. aequinoctialis, from closely related clones.

  相似文献   

4.
Two gramineous species among wild plants, Echinochloa oryzicola Vasing and Setaria viridis (L.) Beauv., and Oryza sativa L. cv. Nipponbare were subjected to salt stress. The relative growth rate (RGR), Na content, photosynthetic rate, antioxidant enzymes activity (superoxide disumutase (SOD), catalase (CAT), ascorbate peroxidase (APx) and glutathione reductase (GR)), and malondialdehyde (MDA) content in leaves after NaCl treatment were studied. RGR significantly decreased in O. sativa more than in E. oryzicola and S. viridis. Comparatively salt-tolerant S. viridis showed higher growth rate, lower Na accumulation rate in leaves, higher photosynthetic rate, and induced more SOD, CAT, APx, and GR activity and lower increase of MDA content as compared to the salt-sensitive O. sativa. At the same time, the comparatively salt-tolerant E. oryzicola also showed higher growth rate, much lower Na accumulation and no observable increase of MDA content, even though the CAT and APx activities were not induced by salinity. These results suggested that the scavenging system induced by H2O2-mediated oxidative damage might, at least in part, play an important role in the mechanism of salt tolerance against cell toxicity of NaCl in some gramineous plants  相似文献   

5.
In the present study, we compared the response to salinity of three plants from Brittany coast with contrasted ecological status: Limonium latifolium (salt marshes), Matricaria maritima (beach tops and sand dunes) and Crambe maritima (fixed dunes). Under controlled glasshouse conditions, the growth of the three plants decreased with increasing external salinity. L. latifolium and C. maritima exhibited the highest and lowest resistance to severe salt stress (400 mM), respectively. M. maritima could be considered as an intermediate species, since it tolerated salinity up to 200 mM. The same observation could be made with sodium absorption and acuumulation in plant tissues, the most tolerant species (L. latifolium being the least Na accumulator. Hydrogen peroxide (H2O2) and malondialdehyde (MDA), commonly produced in conditions of stress, accumulated significantly in salt treated C. maritima and M. maritima while not in the tolerant L. latifolium. The latter used glutathione reductase to maintain constant H2O2 levels under salt stress while peroxidases were very low and ascorbate peroxidase did not respond to salinity stimulation. The medium tolerant halophyte M. maritima used peroxidases to protect from NaCl-induced H2O2, while the sensitive C. maritima failed to detoxify H2O2 despite a sharp increase in catalase activity. Results showed that the three coastal species differ in resistance to salinity. They also suggested that the level of plant resistance to salinity could be attributed to differing mechanisms to manage the accumulation of sodium and cope with the oxidative damages.  相似文献   

6.
The effects of low pH on antioxidant metabolism and nitrogen (N) assimilation in ginger seedlings under salt stress were investigated. A two-way randomized block design was used: the main treatment consisted of two pH levels, normal and low pH (6.0 and 4.0, respectively), and the other treatment consisted of two salinity levels, 0 and 100 mmol l−1 Na+ (NaCl and Na2SO4). The results showed that low pH decreased the malondialdehyde (MDA) and hydrogen peroxide contents of ginger seedling leaves under salt stress. Moreover, low pH and salt stress significantly decreased the contents of non-enzymatic antioxidants, including ascorbate (AsA) and glutathione (GSH), and increased the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR). In addition, salt stress inhibited the N assimilation process in ginger seedling leaves, but low pH improved N assimilation under salt stress. Our finding was that low pH alleviated oxidative damage and promoted N assimilation under salt stress.  相似文献   

7.
  • Coastal salt marsh plants employ various combinations of morphological and physiological adaptations to survive under saline conditions. Little information is available on salinity tolerance mechanisms of Halopeplis perfoliata, a C3 stem succulent halophyte.
  • We investigated the growth, photosynthesis and antioxidant defence mechanisms of H. perfoliata under saline conditions (0, 150, 300 and 600 mM NaCl) in an open greenhouse.
  • Optimal shoot succulence, projected shoot area and relative growth rate were obtained in the low (150 mm NaCl) salinity treatment, while growth was inhibited at the highest salinity (600 mm NaCl). The CO2 compensation point and carbon isotope composition of biomass confirmed C3 photosynthesis. Increases in salinity did not affect the photosynthetic pigment content or maximum quantum efficiency of PSII of H. perfoliata. Assimilation of CO2 (A) also remained unaffected by salinity. A modest effect on some gas exchange and photochemistry parameters was observed at 600 mm NaCl. With increasing salinity, there was a continual increase in respiration, suggesting utilisation of energy to cope with saline conditions. Under 300 and 600 mm NaCl, there was an increase in H2O2 and MDA with a concomitant rise in AsA, GR content and CAT activity.
  • Hence, H. perfoliata appears to be an obligate halophyte that can grow up to seawater salinities by modulating photosynthetic gas exchange, photochemistry and the antioxidant defence systems.
  相似文献   

8.
Previous studies indicate that the roots of nonhalophytes showed negative halotropism to salt stress to avoid salt damage. However, halotropism of euhalophytes and their possible reasons are little known. Limonium bicolor, a typical recretohalophyte with multicellular salt glands, was used to study halotropism compared with Arabidopsis thaliana under NaCl, KCl and Na2SO4 stress. The elongation of the roots in L. bicolor was significantly promoted by the appropriate concentrations of NaCl, KCl and Na2SO4, but those of A. thaliana was markedly inhibited. However, isosmotic mannitol with 200?mM NaCl did not affect the root growth of both L. bicolor and A. thaliana. The root activity of both L. bicolor and A. thaliana was enhanced by salts. Compared with K+, Cl, and SO42?, Na+ played a critical role in halotropism of L. bicolor. Furthermore, the gravitropic setpoint angle of L. bicolor increased under NaCl, KCl and Na2SO4 treatments compared with controls, and the phenomenon was most apparent under NaCl treatments. The endogenous IAA content of the NaCl-treated L. bicolor seedlings was significantly higher than that of the controls. These results suggest that the recretohalophyte L. bicolor has positive halotropism and Na+ plays a pivotal role in L. bicolor’s positive root halotropism by regulating IAA.  相似文献   

9.
Summary The effects of increasing concentrations of NaCl and CaCl2 on quince (Cydonia oblonga Mill. BA 29 clone) somatic embryogenesis and adventitious root regeneration were investigated. Leaves collected from in vitro-grown shoots were used as explants and induced for 2d in liquid Murashige and Skoog medium containing 11.3 μM 2,4-dichlorophenoxyacetic acid. Explants were then cultured on semisolid Murashige and Skoog medium enriched with 4.7 μM kinetin and 0.5 μM naphthaleneacetic acid under red light for 25 d and under white light for another 25 d. Two experiments were performed: in the first, NaCl was used at 0,25, 50, 100, and 200 mM in factorial combination with CaCl2 at 3, 9, and 27 mM; in the second, NaCl was applied at 0, 5, 10, 20, 40, and 80 mM in combination with CaCl2 at 0.3, 1.0, and 3.0 mM. Quince leaves revealed the capacity to regenerate somatic embryos and/or adventitious roots. Quantitative and qualitative regeneration from leaves was affected by NaCl treatments: increasing NaCl concentrations, in combination with CaCl2 at 1 mM, led to an increase in the proportion of leaves producing somatic embryos only, and to a decrease of both leaves regenerating roots only and leaves simultaneously producing somatic embryos and adventitious roots. This suggests a beneficial effect of salt stress on the embryogenic process. The regeneration response decreased with increasing salt concentrations and was almost totally inhibited above 50 mM NaCl and 9 mM CaCl2. The presence of CaCl2 in the culture medium apparently mitigated the effects of salt stress, but only when NaCl was applied at 40 mM. NaCl at 5 mM, in the presence of 0.3 or 1 mM CaCl2, was favorable both to somatic embryo and root production. No value of the ratio Na+/Ca2+ was found to be optimal for the regeneration processes.  相似文献   

10.
Cumin is an annual, aromatic, herbaceous, medicinal, spice plant, most widely used as a food additive and flavoring agent in different cuisines. The study is intended to comprehensively analyse physiological parameters, biochemical composition and metabolites under salinity stress. Seed germination index, rate of seed emergence, rate of seed germination, mean germination time, plant biomass, total chlorophyll and carotenoid contents decreased concomitantly with salinity. In contrast, total antioxidant activity, H2O2, proline and MDA contents increased concurrently with stress treatments. Total phenolic and flavonoid contents were decreased initially about 1.4-fold at 50 mM, and thereafter increased about 1.2-fold at 100 mM NaCl stress. Relative water content remained unchanged up to 50 mM NaCl stress, and thereafter decreased significantly. About 2.8-fold electrolyte leakage was found in 50 mM, which increases further 4-fold at 100 mM NaCl stress. Saturated fatty acids (FAs) increased gradually with salinity, whereas unsaturation index and degree of unsaturation change arbitrarily along with the percent quantity of unsaturated FAs. Total lipid and fatty acid composition were significantly influenced by salinity stress. A total of 45 differentially expressed metabolites were identified, including luteolin, salvianolic acid, kaempferol and quercetin, which are phenolic, flavonoid or alkaloids in nature and contain antioxidant activities. Additionally, metabolites with bioactivity such as anticancerous (docetaxel) and antimicrobial (megalomicin) properties were also identified. The study evidenced that plant shoots are a rich source of metabolites, essential amino acids, phenolic compounds and fatty acids, which unveil the medicinal potential of this plant, and also provide useful insight about metabolic responses under salinity stress.  相似文献   

11.
The effects of long-term NaCl and KCl treatment on plant growth and antioxidative responses were investigated in Chenopodium album, a salt-resistant species widely distributed in semi-arid and light-saline areas of Xinjiang, China. Growth parameters [plant height, branch number, leaf morphology and chlorophyll (Chl) content], the level of oxidative stress [superoxide anion radical (O2 ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations], activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX)], the contents of non-enzymatic antioxidants [carotenoids (Car) and ascorbic acid (AsA)] and expression of selected genes were investigated. Plants were grown in the presence of 0, 50, and 300 mM NaCl or KCl for 2 months. Growth was stimulated by 50 mM NaCl or KCl, maintained stable at 300 mM NaCl, but was inhibited by 300 mM KCl. Three hundred mM NaCl did not affect O2 , H2O2, MDA, Car and AsA, but increased the activities of SOD, CAT and POX compared to the controls. RT-PCR analysis suggested that expression of some genes encoding antioxidant enzymes could be induced during long-term salt stress, which was consistent with the enzyme activities. Treatment with 300 mM KCl was associated with elevated oxidative stress, and significantly decreased Car and AsA contents. These results suggest that an efficient antioxidant machinery is important for overcoming oxidative stress induced by treatment with high NaCl concentrations in C. album. Other strategies of ion regulation may also contribute to the differential tolerance to Na and K at higher concentrations.  相似文献   

12.
The purpose of the current investigation was to study the effect of Ca2+ (0, 3.5 and 20 mM concentrations) on the antioxidant systems in the halophyte Cakile maritima under NaCl stress (0, 100, 200 and 400 mM NaCl). Plants treated with both moderate calcium (3.5 mM) and salt levels (100 mM) showed the maximum growth, and the addition of 20 mM calcium to the nutrient media did not significantly reduce the growth under the moderate salt treatment. The absence of calcium associated with high salt concentration induced a strong reduction of biomass production. The tolerance of C. maritima at moderate salinity and calcium was related with the lowest values of the parameters indicative of oxidative stress (malondialdehyde, electrolyte leakage and hydrogen peroxide concentration). This was accompanied with a higher peroxidase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities. In contrast, in the absence of calcium, those enzymes showed the lowest activities under all salt treatments. As a whole, it can be noticed that salt tolerance was improved by moderate calcium concentration; however, the absence of calcium has a drastic effect on C. maritima.  相似文献   

13.
以白菜‘矮抗青’(基因组AA)和‘中花芥蓝’(基因组CC)及其人工合成异源四倍体甘蓝型油菜(AACC)的早期世代(F1~F4)为实验材料,采用水培方法分别比较它们在100、200mmol/L NaCl处理下的生理指标差异。结果表明:(1)在盐胁迫条件下,‘中花芥蓝’植株的生物量、脯氨酸和叶绿素含量、抗氧化酶(SOD、POD、CAT)活性均最低,而相对电导率、MDA含量则最高。在100mmol/L NaCl处理下,F2代植株的生物量、叶绿素含量、SOD活性最大,MDA含量最低;在200mmol/L NaCl处理下,F4代的生物量、叶绿素含量、POD活性最大,MDA含量最低。研究发现,亲本‘矮抗青’的耐盐特性高于亲本‘中花芥蓝’,它们的杂种后代(异源四倍体)遗传了AA基因组的耐盐特性,从而比二倍体亲本具有更强的抵御盐胁迫的能力。  相似文献   

14.
Low temperatures and high light cause imbalances in primary and secondary reactions of photosynthesis, and thus can result in oxidative stress. Plants employ a range of low‐molecular weight antioxidants and antioxidant enzymes to prevent oxidative damage, and antioxidant defence is considered an important component of stress tolerance. To figure out whether oxidative stress and antioxidant defence are key factors defining the different cold acclimation capacities of natural accessions of the model plant Arabidopsis thaliana, we investigated hydrogen peroxide (H2O2) production, antioxidant enzyme activity and lipid peroxidation during a time course of cold treatment and exposure to high light in four differentially cold‐tolerant natural accessions of Arabidopsis (C24, Nd, Rsch, Te) that span the European distribution range of the species. All accessions except Rsch (from Russia) had elevated H2O2 in the cold, indicating that production of reactive oxygen species is part of the cold response in Arabidopsis. Glutathione reductase activity increased in all but Rsch, while ascorbate peroxidase and superoxide dismutase were unchanged and catalase decreased in all but Rsch. Under high light, the Scandinavian accession Te had elevated levels of H2O2. Te appeared most sensitive to oxidative stress, having higher malondialdehyde (MDA) levels in the cold and under high light, while only high light caused elevated MDA in the other accessions. Although the most freezing‐tolerant, Te had the highest sensitivity to oxidative stress. No correlation was found between freezing tolerance and activity of antioxidant enzymes in the four accessions investigated, arguing against a key role for antioxidant defence in the differential cold acclimation capacities of Arabidopsis accessions.  相似文献   

15.

Salinity, as a serious and prevalent abiotic stress, causes widespread crop losses by restricting plant growth and production throughout the world. In this study, the biochemical and molecular responses of the pistachio (Pistacia vera L.) plant were studied under NaCl and salicylic acid (SA) treatments using hydroponically grown salt tolerant (Ghazvini) and salt sensitive (Sarakhs) pistachio cultivars. NaCl treatment (250 mM) increased the production of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and the activity of antioxidant enzymes in both cultivars. In the sensitive cultivar, the H2O2 content was higher than the tolerant cultivar, especially in the roots. SA application to both salt-stress-treated cultivars resulted in an increase in photosynthetic pigment contents and antioxidant enzyme activity and a decrease in the H2O2 and MDA contents. After NaCl treatment, the isochorismate synthase (ICS) gene was upregulated in Ghazvini which leads to an increase in the SA content of the salt tolerant pistachio cultivar. In contrast, the salt treatment downregulated the expression of the ICS gene in Sarakhs. The ICS gene expression was positively regulated by SA treatment under the salt stress condition. Our results suggest that Ghazvini has higher salinity tolerance than Sarakhs due to its higher antioxidant capacity, photosynthetic pigment content, and the cultivar-specific expression pattern of the ICS gene. In this study, the potential alleviative effects of SA on the adverse effect of salt stress in P. vera (Pistacia vera) were also identified and highlighted.

  相似文献   

16.
17.
Carrot (Daucus carota L.) is widely utilized all over the world due to its enriched healthy nutritional composition. However, its growth and quality is adversely affected due to saline stress. To assess salt-induced regulation in different enzymatic and nonenzymatic antioxidants in the edible part of two cultivars (T-29 and DC-4) of carrot, a greenhouse experiment was conducted. The cultivars were grown for 90 days under varying (0, 50, 100, and 150 mM NaCl) saline regimes. High accumulation of glycinebetaine (GB), malondialdehyde (MDA), and ascorbic acid (AsA) contents was found in the roots of both carrot lines under varying saline regimes. However, total soluble proteins and activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) declined in the edible part of both carrot cultivars. Alpha-tocopherol (α-Toco) contents remained almost unaffected at all saline regimes except at 150 mM NaCl, where tocopherol content increased markedly. Of both carrot cultivars, cv. DC-4 accumulated relatively higher amount of GB, soluble protein and α-Toco contents than cv. T-29. The cv. T-29 had considerably higher amounts of AsA and MDA and activities of POD, SOD, and CAT than those in cv. DC-4 both under saline and nonsaline conditions. Overall, GB, AsA, and MDA contents increased while enzymatic antioxidant activities decreased in both carrot cultivars under different saline regimes which indicated that the enzymatic antioxidant metabolism was negatively influenced in the edible part of carrot due to salinity stress. So it can be suggested that the carrot is salt sensitive and its nutritional value in terms of antioxidants declines under salt stress.  相似文献   

18.
Plant exhibits various patterns of survival under salinity and their growth and development depend on their capacity to overcome the stress. Present investigation was focused on the response and regulation of the antioxidant defense system and the level of lipid peroxidation in Panicum miliacium and Panicum sumatrense under salt treatments. NaCl stress was imposed for 20 days after sowing of two Panicum species. The changes in the antioxidant enzyme activity like superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase and the rate of lipid peroxidation level in terms of malondialdehyde (MDA) were recorded in both Panicum species. A great correlation exists between the antioxidant enzymes and lipid peroxidation. The defense mechanism activated in Panicum species studied was confirmed by the increased antioxidant enzyme activities under progressive NaCl stress. MDA content remained close to control at moderate NaCl concentrations and increased at higher salinities. Although lipid peroxidation increased in both Panicum species under salt stress the percent of increase was low in P. sumatrense indicating its salt-tolerant nature. Another possible conclusion is that improved tolerance to salt stress may be accomplished by increased capacity of antioxidative system.  相似文献   

19.
To understand the root function in salt tolerance, radial salt and water transport were studied using reed plants growing in brackish habitat water with an osmotic pressure (πM) of 0.63 MPa. Roots bathed in this medium exuded a xylem sap with NaCl as the major osmolyte and did so even at higher salt concentration (πM up to 1.3 MPa). Exudation was stopped after a small increase of πM (0.26 MPa) using polyethylene glycol 600 as osmolyte. The endodermis of fine lateral roots was found to be the main barrier to radial solute diffusion on an apoplastic path. Apoplastic salt transfer was proven by rapid replacement of stelar Na+ by Li+ in an isomolar LiCl medium. Water fluxes did not exert a true solvent drag on NaCl. Xylem sap concentrations of NaCl in basal internodes of transpiring culms were more than five times higher than in medial and upper ones. It was concluded that the radial NaCl flux was mainly diffusion through the apoplast, and radial water transport, because of the resistance of the cell wall matrix to convective mass flow, was confined to the symplast. Radial salt permeation in roots reduced the water stress exerted by the brackish medium.  相似文献   

20.
Summary Rhizosphere salinity decreased the capacity of soybean to accumulate a pterocarpanoid phytoalexin (glyceollin) in the stem in response toPhytophthora megasperma var.sojae. Rapid (48h) accumulation was depressed by NaCl, Na2SO4, CaCl2 and MgSO4 applications. Time-course accumulations was slowed by applications. Time-course accumulation was slowed by application of 0.131M NaCl. Glyceollin accumulation was also reduced in plants subjected to a period of high salinity stress (0.177M NaCl, 72 h) after a period of nonsalinized growth. Calcium chloride completely suppressed glyceollin accumulation in normally-resistant plants but no susceptibility to the fungus was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号