首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sevelamer hydrochloride is used for ten years in patients on dialysis as a phosphate binder. We have previously shown that oral application of sevelamer prevents the bone loss and increases the bone volume in ovariectomized rats. In this study we further analysed the biomechanical properties of bones from rats treated with sevelamer utilizing a threepoint bending test to determine the mechanical properties of the cortical bone of the mid-shaft femur, while the indentation test was used to determine the mechanical properties of cancellous bone in the marrow cavity of the distal femoral metaphysis. Parameters analyzed included: maximum load (F(u)), stiffness (S), energy absorbed (W), toughness (T) and ultimate strength (sigma). The intrinsic properties, stress, elastic modulus and toughness were determined from measured maximum load, strains, stiffness, energy absorbed, outer and inner diameters, and calculated bone cross-sectional moment of inertia. Sevelamer was given to rats for 25 weeks with a content of 3% of sevelamer in a standard diet, starting immediately following ovariectomy (OVX). Animals were divided to the following groups: (1) Sham; (2) Sham + sevelamer 3%; (3) OVX; (4) OVX + sevelamer 3%. Our results showed that sevelamer particularly influenced the rat trabecular bone by increasing the maximum load for 26.2%, energy absorbed for 24.2% and the ultimate strength for 26.2% in sham animals treated with sevelamer 3%, as compared to sham rats. Sevelamer 3% in OVX rats also increased the maximum load for 71.4%, stiffness for 70.7%, energy absorbed for 55.9% and the ultimate strength for 71.3% as compared to OVX controls. In the three bending test sevelamer had a very little effect on preventing loss of bone strenght in the cortical bone. These results collectively suggest that sevelamer improves bone biomechanical properties, mainly affecting trabecular bone quality in both normal and ovariectomized rats.  相似文献   

2.

Background and Objectives

Vitamin D deficiency and endothelial dysfunction are non-traditional risk factors for cardiovascular events in chronic kidney disease. Previous studies in chronic kidney disease have failed to demonstrate a beneficial effect of vitamin D on arterial stiffness, left ventricular mass and inflammation but none have assessed the effect of vitamin D on microcirculatory endothelial function.

Study Design

We conducted a randomised controlled trial of 38 patients with non diabetic chronic kidney disease stage 3–4 and concomitant vitamin D deficiency (<16 ng/dl) who received oral ergocalciferol (50,000 IU weekly for one month followed by 50,000 IU monthly) or placebo over 6 months. The primary outcome was change in microcirculatory function measured by laser Doppler flowmetry after iontophoresis of acetylcholine. Secondary endpoints were tissue advanced glycation end products, sublingual functional capillary density and flow index as well as macrovascular parameters. Parallel in vitro experiments were conducted to determine the effect of ergocalciferol on cultured human endothelial cells.

Results

Twenty patients received ergocalciferol and 18 patients received placebo. After 6 months, there was a significant improvement in the ergocalciferol group in both endothelium dependent microcirculatory vasodilatation after iontophoresis of acetylcholine (p = 0.03) and a reduction in tissue advanced glycation end products (p = 0.03). There were no changes in sublingual microcirculatory parameters. Pulse pressure (p = 0.01) but not aortic pulse wave velocity was reduced. There were no significant changes in bone mineral parameters, blood pressure or left ventricular mass index suggesting that ergocalciferol improved endothelial function independently of these parameters. In parallel experiments, expression of endothelial nitric oxide synthase and activity were increased in human endothelial cells in a dose dependent manner.

Conclusions

Ergocalciferol improved microcirculatory endothelial function in patients with chronic kidney disease and concomitant vitamin D deficiency. This process may be mediated through enhanced expression and activity of endothelial nitric oxide synthase.

Trial Registration

Clinical trials.gov NCT00882401  相似文献   

3.
Secondary hyperparathyroidism was suppressed over a period of one year in 12 children with chronic renal failure by using a regimen of mild dietary phosphate restriction and high dose phosphate binders. The patients were randomised to receive either aluminium hydroxide or calcium carbonate by mouth for six months and then crossed over to the other medication. Vitamin D (dihydrotachysterol) dosage was unchanged. Serum parathyroid hormone concentrations were reduced to within the normal range, urinary cyclic adenosine monophosphate values fell, plasma phosphate concentrations decreased, and the theoretical renal phosphate threshold increased significantly. Transiliac bone biopsy findings improved in four patients with adequate suppression of parathyroid hormone concentrations, deteriorated in two patients who were not compliant, and did not change in five patients in whom initial bone disease was mild. Growth velocity improved significantly. There was no difference in the clinical response, biochemical changes, or incidence of complications during treatment with the two agents. In view of the risk of aluminium toxicity the use of high dose calcium carbonate with dietary phosphate restriction and vitamin D supplementation is recommended in the control of secondary hyperparathyroidism in children with chronic renal failure.  相似文献   

4.
Fibroblast growth factor 23 (FGF23) significantly increases with declining renal function, leading to reduced renal tubular phosphate reabsorption, decreased 1,25-dihydroxyvitamin D, and increased left ventricular hypertrophy. Elevated FGF23 is associated with increased mortality. FGF23 is synthesized in osteoblasts and osteocytes; however, the mechanisms by which it is regulated are not clear. Patients with chronic kidney disease have decreased renal acid excretion leading to metabolic acidosis, which has a direct effect on bone cell activity. We hypothesized that metabolic acidosis would directly increase bone cell FGF23 production. Using cultured neonatal mouse calvariae, we found that metabolic acidosis increased medium FGF23 protein levels as well as FGF23 RNA expression at 24 h and 48 h compared with incubation in neutral pH medium. To exclude that the increased FGF23 was secondary to metabolic acidosis-induced release of bone mineral phosphate, we cultured primary calvarial osteoblasts. In these cells, metabolic acidosis increased FGF23 RNA expression at 6 h compared with incubation in neutral pH medium. Thus metabolic acidosis directly increases FGF23 mRNA and protein in mouse bone. If these results are confirmed in humans with chronic kidney disease, therapeutic interventions to mitigate acidosis, such as bicarbonate administration, may also lower levels of FGF23, decrease left ventricular hypertrophy, and perhaps even decrease mortality.  相似文献   

5.
6.
Razzaque MS 《IUBMB life》2011,63(4):240-247
Impaired kidney function and subsequent skeletal responses play a critical role in disrupting phosphate balance in chronic kidney disease (CKD) patients with mineral and bone disorder (CKD-MBD). In patients with CKD-MBD, the inability of the kidney to maintain normal mineral ion balance affects bone remodeling to induce skeletal fracture and extraskeletal vascular calcification. In physiological conditions, bone-derived fibroblast growth factor 23 (FGF23) acts on the kidney to reduce serum phosphate and 1,25-dihydroxyvitamin D levels. In humans, increased bioactivity of FGF23 leads to increased urinary phosphate excretion, which induces hypophosphatemic diseases (e.g., rickets/osteomalacia). However, reduced FGF23 activity is associated with hyperphosphatemic diseases (e.g., tumoral calcinosis). In patients with CKD, high serum levels of FGF23 fail to reduce serum phosphate levels and lead to numerous complications, including vascular calcification, one of the important determinants of mortality of CKD-MBD patients. Of particular significance, molecular, biochemical and morphological changes in patients with CKD-MBD are mostly due to osteo-renal dysregulation of mineral ion metabolism. Furthermore, hyperphosphatemia can partly contribute to the development of secondary hyperparathyroidism in patients with CKD-MBD. Relatively new pharmacological agents including sevelamer hydrochloride, calcitriol analogs and cinacalcet hydrochloride are used either alone, or in combination, to minimize hyperphosphatemia and hyperparathyroidism associated complications to improve morbidity and mortality of CKD-MBD patients. This article will briefly summarize how osteo-renal miscommunication can induce phosphate toxicity, resulting in extensive tissue injuries.  相似文献   

7.

Objective

Arterial and ventricular stiffening are characteristics of diabetes and aging which confer significant morbidity and mortality; advanced glycation endproducts (AGE) are implicated in this stiffening pathophysiology. We examined the association between HbA1c, an AGE, with arterial and ventricular stiffness measures in older individuals without diabetes.

Research Design & Methods

Baseline HbA1c was measured in 830 participants free of diabetes defined by fasting glucose or medication use in the Cardiovascular Health Study, a population-based cohort study of adults aged ≥65 years. We performed cross-sectional analyses using baseline exam data including echocardiography, ankle and brachial blood pressure measurement, and carotid ultrasonography. We examined the adjusted associations between HbA1c and multiple arterial and ventricular stiffness measures by linear regression models and compared these results to the association of fasting glucose (FG) with like measures.

Results

HbA1c was correlated with fasting and 2-hour postload glucose levels (r = 0.21; p<0.001 for both) and positively associated with greater body-mass index and black race. In adjusted models, HbA1c was not associated with any measure of arterial or ventricular stiffness, including pulse pressure (PP), carotid intima-media thickness, ankle-brachial index, end-arterial elastance, or left ventricular mass (LVM). FG levels were positively associated with systolic, diastolic and PP and LVM.

Conclusions

In this sample of older adults without diabetes, HbA1c was not associated with arterial or ventricular stiffness measures, whereas FG levels were. The role of AGE in arterial and ventricular stiffness in older adults may be better assessed using alternate AGE markers.  相似文献   

8.
We determined the acute effects of methoxamine, a specific alpha1-selective adrenoceptor agonist, on the left ventricular-arterial coupling in streptozotocin (STZ)-diabetic rats, using the end-systolic pressure-stroke volume relationships. Rats given STZ 65 mg x kg(-1) iv (n = 8) were compared with untreated age-matched controls (n = 8). A high-fidelity pressure sensor and an electromagnetic flow probe measured left ventricular (LV) pressure and ascending aortic flow, respectively. Both LV end-systolic elastance E(LV,ES) and effective arterial elastance Ea were estimated from the pressure-ejected volume loop. The optimal afterload Q(load) determined by the ratio of Ea to E(LV,ES) was used to measure the optimality of energy transmission from the left ventricle to the arterial system. In comparison with controls, diabetic rats had decreased LV end-systolic elastance E(LV,ES), at 513 +/- 30 vs. 613 +/- 29 mmHg x mL(-1), decreased effective arterial elastance Ea, at 296 +/- 20 vs. 572 +/- 48 mmHg x mL(-1), and decreased optimal afterload Q(load), at 0.938 +/- 0.007 vs. 0.985 +/- 0.009. Methoxamine administration to STZ-diabetic rats significantly increased LV end-systolic elastance E(LV,ES), from 513 +/- 30 to 602 +/- 38 mmHg x mL(-1), and effective arterial elastance Ea, from 296 +/- 20 to 371 +/- 28 mmHg x mL(-1), but did not change optimal afterload Q(load). We conclude that diabetes worsens not only the contractile function of the left ventricle, but also the matching condition for the left ventricular-arterial coupling. In STZ-diabetic rats, administration of methoxamine improves the contractile status of the ventricle and arteries, but not the optimality of energy transmission from the left ventricle to the arterial system.  相似文献   

9.
p-Cresol is a by-product of the metabolism of aromatic aminoacid operated by resident intestinal bacteria. In patients with chronic kidney disease, the accumulation of p-cresol and of its metabolite p-cresyl-sulphate causes endothelial dysfunction and ultimately increases the cardiovascular risk of these patients. Therapeutic strategies to reduce plasma p-cresol levels are highly demanded but not available yet. Because it has been reported that the phosphate binder sevelamer sequesters p-cresol in vitro we hypothesized that it could do so also in peritoneal dialysis patients. To explore this hypothesis we measured total cresol plasma concentrations in 57 patients with end-stage renal disease on peritoneal dialysis, 29 receiving sevelamer for the treatment of hyperphosphatemia and 28 patients not assuming this drug. Among the patients not assuming sevelamer, 16 were treated with lanthanum whereas the remaining 12 received no drug because they were not hyperphosphatemic. Patients receiving sevelamer had plasma p-cresol and serum high sensitivity C-reactive protein concentrations significantly lower than those receiving lanthanum or no drug. Conversely, no difference was observed among the different groups either in residual glomerular filtration rate, total weekly dialysis dose, total clearance, urine volume, protein catabolic rate, serum albumin or serum phosphate levels. Multiple linear regression analysis showed that none of these variables predicted plasma p-cresol concentrations that, instead, negatively correlated with the use of sevelamer. These results suggest that sevelamer could be an effective strategy to lower p-cresol circulating levels in peritoneal dialysis patients in which it could also favorably affect cardiovascular risk because of its anti-inflammatory effect.  相似文献   

10.
When a physiological (exercise) stress echo is scheduled, interest focuses on wall motion segmental contraction abnormalities to diagnose ischemic response to stress, and on left ventricular ejection fraction to assess contractile reserve. Echocardiographic evaluation of volumes (plus standard assessment of heart rate and blood pressure) is ideally suited for the quantitative and accurate calculation of a set of parameters allowing a complete characterization of cardiovascular hemodynamics (including cardiac output and systemic vascular resistance), left ventricular elastance (mirroring left ventricular contractility, theoretically independent of preload and afterload changes heavily affecting the ejection fraction), arterial elastance, ventricular arterial coupling (a central determinant of net cardiovascular performance in normal and pathological conditions), and diastolic function (through the diastolic mean filling rate). All these parameters were previously inaccessible, inaccurate or labor-intensive and now become, at least in principle, available in the stress echocardiography laboratory since all of them need an accurate estimation of left ventricular volumes and stroke volume, easily derived from 3 D echo. Aims of this paper are: 1) to propose a simple method to assess a set of parameters allowing a complete characterization of cardiovascular hemodynamics in the stress echo lab, from basic measurements to calculations 2) to propose a simple, web-based software program, to learn and training calculations as a phantom of the everyday activity in the busy stress echo lab 3) to show examples of software testing in a way that proves its value. The informatics infrastructure is available on the web, linking to http://cctrainer.ifc.cnr.it  相似文献   

11.
慢性肾脏病患者心脏结构与功能变化的超声心动图研究   总被引:1,自引:0,他引:1  
目的:研究慢性肾脏病(CKD)患者心脏结构及功能的变化.方法:选择我院肾内科175例慢性肾脏病未透析患者,按照2003年美国国家肾脏基金会-肾脏病转归质量(NKF-K/DOQI)指南的标准进行分期,观察所有患者心脏结构及功能在超声中的变化.结果:慢性肾脏病患者随着肾功能的恶化,各组之间比较,室间隔厚度(IVST)、左心室后壁厚度(LVPW)、左心室心肌重量指数(LVMI)、左心室舒张末期内径(LVDd)、左心房内径(LAD)具有升高的趋势(P<0.05,P<0.01);但E/A比值未出现伴随着肾功能恶化而逐渐减低的趋势(P>0.05);射血分数(EF)、短轴缩短卒(FS)在各期之间无明显变化(P>0.05);而TVI技术测定的Em、Em/Am具有显著减低的趋势(P<0.05,P<0.01);瓣膜返流以二尖瓣返流为主.结论:慢性肾脏病患者心脏结构与功能随肾功能减退而加重,超声心动图检查结合组织速度显像(TVI)技术能更好地检测心脏结构和功能变化,尤其是检测左心室舒张功能障碍.  相似文献   

12.
Multiple clinical studies show that arterial stiffness, measured as pulse wave velocity (PWV), precedes hypertension and is an independent predictor of hypertension end organ diseases including stroke, cardiovascular disease and chronic kidney disease. Risk factor studies for arterial stiffness implicate age, hypertension and sodium. However, causal mechanisms linking risk factor to arterial stiffness remain to be elucidated. Here, we studied the causal relationship of arterial stiffness and hypertension in the Na-induced, stroke-prone Dahl salt-sensitive (S) hypertensive rat model, and analyzed putative molecular mechanisms. Stroke-prone and non-stroke-prone male and female rats were studied at 3- and 6-weeks of age for arterial stiffness (PWV, strain), blood pressure, vessel wall histology, and gene expression changes. Studies showed that increased left carotid and aortic arterial stiffness preceded hypertension, pulse pressure widening, and structural wall changes at the 6-week time-point. Instead, differential gene induction was detected implicating molecular-functional changes in extracellular matrix (ECM) structural constituents, modifiers, cell adhesion, and matricellular proteins, as well as in endothelial function, apoptosis balance, and epigenetic regulators. Immunostaining testing histone modifiers Ep300, HDAC3, and PRMT5 levels confirmed carotid artery-upregulation in all three layers: endothelial, smooth muscle and adventitial cells. Our study recapitulates observations in humans that given salt-sensitivity, increased Na-intake induced arterial stiffness before hypertension, increased pulse pressure, and structural vessel wall changes. Differential gene expression changes associated with arterial stiffness suggest a molecular mechanism linking sodium to full-vessel wall response affecting gene-networks involved in vascular ECM structure-function, apoptosis balance, and epigenetic regulation.  相似文献   

13.
The respective contribution of systemic vascular resistance (R) and total arterial compliance (C) to the arterial load remains to be established in humans. Effective arterial elastance (Ea), i.e., the left ventricular end-systolic pressure (LVESP)-over-stroke volume ratio, is a reliable estimate of arterial load. It is widely accepted that Ea mainly relates to mean aortic pressure (MAP) and thus to the R-to-T ratio (R/T ratio), where T is cycle length. We tested the contribution of R/T and 1/C to Ea in 20 normotensive and 46 hypertensive subjects (MAP range: 84-160 mmHg). The multilinear model applied (Ea = 1.00R/T + 0.42/C - 0.04; r2 = 0.97). The sensitivity of Ea to a change in R/T was 2.5 times higher than to a similar change in 1/C in both normotensive and hypertensive adults. The LVESP was more strongly related to systolic aortic pressure (SAP; r2 = 0.94) than to MAP (r2 = 0.83), and LVESP matched 90% SAP (bias = 0 +/- 5mmHg). An alternative model of Ea is proposed, in which Ea is proportional to the heart rate x SAP product-over-cardiac index ratio whatever the MAP.  相似文献   

14.

Background

Patients with chronic kidney disease have an increased cardiovascular risk that is not fully explained by traditional risk factors but appears to be related to increased arterial stiffness. Cytomegalovirus (CMV) infection is associated with increased cardiovascular risk although the mechanisms for this are unknown. We examined whether CMV seropositivity was associated with increased arterial stiffness in patients with chronic kidney disease.

Methodology and Principal Findings

In 215 non-diabetic patients with chronic kidney disease, CMV seropositivity was determined using an anti-CMV IgG ELISA. Pulse wave velocity was measured and aortic distensibility assessed in the ascending, proximal descending and distal descending thoracic aorta. Patients seropositive for CMV had a higher pulse wave velocity and lower aortic distensibility at all 3 levels. These differences (except for ascending aortic distensibility) persisted in a subcohort matched for age, gender and renal function, and when the whole cohort was divided into quartiles of age. In multivariable analyses, CMV seropositivity was an independent determinant of pulse wave velocity and proximal and distal descending aortic distensibility.

Conclusions

In patients with chronic kidney disease, CMV seropositivity is associated with increased arterial stiffness and decreased distensibility of the proximal descending and distal aorta. These findings suggest that further research is required to examine CMV as a possible cause of arterial disease and increased cardiovascular risk in patients with CKD and may be relevant more widely for CMV seropositive patients with normal renal function.  相似文献   

15.
Optimization of right atrial (RA) mechanics is important for maintaining right ventricular (RV) filling and global cardiac output. However, the impact of pericardial restraint on RA function and the compensatory role of the right atrium to changes in RV afterload remain poorly characterized. In eight open-chest sheep, RA elastance (contractility) and chamber stiffness were measured (RA pressure-volume relations) at baseline and during partial pulmonary artery (PA) occlusion. Data were collected before and after pericardiotomy. With the pericardium intact and partial PA occlusion, RA elastance increased by 28% (P < 0.04), whereas RA stiffness tended to rise (P = 0.08). However, after pericardiotomy, there was a significant fall in both RA elastance (54%, P < 0.04) and stiffness (39%, P < 0.04), and subsequent PA occlusion failed to induce a change in elastance (P > 0.19) or stiffness (P > 0.84). After pericardiotomy, RA elastance and stiffness fell dramatically, and the compensatory response of the right atrium to elevated RV afterload was lost. The ability of the right atrium to respond to changes in RV hemodynamics is highly dependent on pericardial integrity.  相似文献   

16.

Background

Klotho was originally identified in a mutant mouse strain unable to express the gene that consequently showed shortened life spans. In humans, low serum Klotho levels are related to the prevalence of cardiovascular diseases in community-dwelling adults. However, it is unclear whether the serum Klotho levels are associated with signs of vascular dysfunction such as arterial stiffness, a major determinant of prognosis, in human subjects with chronic kidney disease (CKD).

Methods

We determined the levels of serum soluble Klotho in 114 patients with CKD using ELISA and investigated the relationship between the level of Klotho and markers of CKD-mineral and bone disorder (CKD-MBD) and various types of vascular dysfunction, including flow-mediated dilatation, a marker of endothelial dysfunction, ankle-brachial pulse wave velocity (baPWV), a marker of arterial stiffness, intima-media thickness (IMT), a marker of atherosclerosis, and the aortic calcification index (ACI), a marker of vascular calcification.

Results

The serum Klotho level significantly correlated with the 1,25-dihydroxyvitamin D level and inversely correlated with the parathyroid hormone level and the fractional excretion of phosphate. There were significant decreases in serum Klotho in patients with arterial stiffness defined as baPWV≥1400 cm/sec, atherosclerosis defined as maximum IMT≥1.1 mm and vascular calcification scores of ACI>0%. The serum Klotho level was a significant determinant of arterial stiffness, but not endothelial dysfunction, atherosclerosis or vascular calcification, in the multivariate analysis in either metabolic model, the CKD model or the CKD-MBD model. The adjusted odds ratio of serum Klotho for the baPWV was 0.60 (p = 0.0075).

Conclusions

Decreases in the serum soluble Klotho levels are independently associated with signs of vascular dysfunction such as arterial stiffness in patients with CKD. Further research exploring whether therapeutic approaches to maintain or elevate the Klotho level could improve arterial stiffness in CKD patients is warranted.  相似文献   

17.
《IRBM》2020,41(3):125-132
ObjectivesMechanical properties of the carotid artery play an important role in the progression of arterial disease such as atherosclerosis. An early change in the mechanical properties of the arteries can be introduced as a novel risk factor for cardiovascular events. The aim of this study is to estimate, in vivo, the elastic biomechanical properties of the internal carotid wall (ICA), from the noninvasive determination of the local arterial wave speed (c).Material and methodsTo achieve this objective, c was determined from a mathematical and physical model developed in our previous work that uses the measurement of the instantaneous blood velocity at two sites by contrast magnetic resonance (PCMR), the study having been conducted on 20 healthy, young and old subjects. The determination of Young's modulus (E) requiring the measurement of the arterial radius (R) and the wall thickness (h), we first estimated the arterial compliance (C). Then from a segmentation of the PCMR image, we evaluated R and thus the elastance given by the product Eh. Finally, in front of the difficulty of measuring h, E was estimated from a statistical study on h.ResultsOur method is sensitive to a variation of the parietal elasticity as it is the case with the age. A statistical test showed that there is a very significant difference between younger and older subjects in terms of speed wave, elastance, compliance, and Young's modulus (p<0.001). Furthermore, these results, in agreement with the reference values reported in the literature, are very promising for detecting a pathological change in parietal elasticity, as is the case in atherosclerosis.ConclusionThus, the in vivo application of this technique shows its potential for clinical evaluation of arterial stiffness ICA as it is fully quantitative, non-invasive and can be performed in real time.  相似文献   

18.
ABSTRACT: BACKGROUND: Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess. Methods/design Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease. The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1--84) as the primary endpoint and (2) 24-hour systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24 hours urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints. DISCUSSION: In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular and bone health in patients with primary hyperparathyroidism. Trial registration ISRCTN33941607.  相似文献   

19.
During the last decennium, the role of bone marrow mononuclear cells (BMMC) has been underscored in the healing process after acute myocardial infarction (AMI). Although these cells improve left ventricular recovery after AMI in experimental studies, results from large-scale randomised trials investigating BMMC therapy in patients with AMI have shown contradictory results. To address this issue the HEBE study was designed, a multicentre, randomised trial, evaluating the effects of intracoronary infusion of BMMCs and the effects of intracoronary infusion of peripheral blood mononuclear cells after primary percutaneous coronary intervention. The primary endpoint of the HEBE trial is the change in regional myocardial function in dysfunctional segments at four months relative to baseline, based on segmental analysis as measured by magnetic resonance imaging. The results from the HEBE trial will provide detailed information about the effects of intracoronary BMMC therapy on post-infarct left ventricular recovery. In addition, further analysis of the data and material obtained may provide important mechanistic insights into the contribution of BMMCs to natural recovery from AMI as well as the response to cell therapy. This may significantly contribute to the development of improved cell-based therapies, aiming at optimising post-infarct recovery and preventing heart failure. (Neth Heart J 2008;16:436-9.)  相似文献   

20.
Myocardial interstitial edema forms as a result of several disease states and clinical interventions. Acute myocardial interstitial edema is associated with compromised systolic and diastolic cardiac function and increased stiffness of the left ventricular chamber. Formation of chronic myocardial interstitial edema results in deposition of interstitial collagen, which causes interstitial fibrosis. To assess the effect of myocardial interstitial edema on the mechanical properties of the left ventricle and the myocardial interstitium, we induced acute and chronic interstitial edema in dogs. Acute myocardial edema was generated by coronary sinus pressure elevation, while chronic myocardial edema was generated by chronic pulmonary artery banding. The pressure-volume relationships of the left ventricular myocardial interstitium and left ventricular chamber for control animals were compared with acutely and chronically edematous animals. Collagen content of nonedematous and chronically edematous animals was also compared. Generating acute myocardial interstitial edema resulted in decreased left ventricular chamber compliance compared with nonedematous animals. With chronic edema, the primary form of collagen changed from type I to III. Left ventricular chamber compliance in animals made chronically edematous was significantly higher than nonedematous animals. The change in primary collagen type secondary to chronic left ventricular myocardial interstitial edema provides direct evidence for structural remodeling. The resulting functional adaptation allows the chronically edematous heart to maintain left ventricular chamber compliance when challenged with acute edema, thus preserving cardiac function over a wide range of interstitial fluid pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号