首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locomotion arises from the complex and coordinated function of limb muscles. Yet muscle function is dynamic over the course of a single stride and between strides for animals moving at different speeds or on variable terrain. While it is clear that motor unit recruitment can vary between and within muscles, we know little about how work is distributed within and between muscles under in vivo conditions. Here we show that the lateral gastrocnemius (LG) of helmeted guinea fowl (Numida meleagris) performs considerably more work than its synergist, the medial gastrocnemius (MG) and that the proximal region of the MG (pMG) performs more work than the distal region (dMG). Positive work done by the LG was approximately twice that of the proximal MG when the birds walked at 0.5 ms -1, and four times when running at 2.0 m s-1. This is probably due to different moments at the knee, as well as differences in motor unit recruitment. The dMG performed less work than the pMG because its apparent dynamic stiffness was greater, and because it exhibited a greater recruitment of slow-twitch fibres. The greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which increases with changes in gait and speed.  相似文献   

2.
One of the purposes of footwear is to assist locomotion, but some footwear types seem to restrict natural foot motion, which may affect the contribution of ankle plantar flexor muscles to propulsion. This study examined the effects of different footwear conditions on the activity of ankle plantar flexors during walking. Ten healthy habitually shod individuals walked overground in shoes, barefoot and in flip-flops while fine-wire electromyography (EMG) activity was recorded from flexor hallucis longus (FHL), soleus (SOL), and medial and lateral gastrocnemius (MG and LG) muscles. EMG signals were peak-normalised and analysed in the stance phase using Statistical Parametric Mapping (SPM). We found highly individual EMG patterns. Although walking with shoes required higher muscle activity for propulsion than walking barefoot or with flip-flops in most participants, this did not result in statistically significant differences in EMG amplitude between footwear conditions in any muscle (p > 0.05). Time to peak activity showed the lowest coefficient of variation in shod walking (3.5, 7.0, 8.0 and 3.4 for FHL, SOL, MG and LG, respectively). Future studies should clarify the sources and consequences of individual EMG responses to different footwear.  相似文献   

3.
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.  相似文献   

4.
Ultrasonography was used to measure the pennation angle of the human tibialis anterior (TA), lateral gastrocnemius (LG), medial gastrocnemius (MG), and soleus (Sol). The right and left legs of 8 male and 8 female subjects were tested at rest and during maximum voluntary contraction (MVC). Joint angles were chosen to control muscle tendon lengths so that the muscles were near their optimal length within the length-tension relationship. No differences in pennation angle were detected between the right and left legs. Another consistent finding was that the pennation angle at MVC was significantly greater than at rest for all muscles tested. Optimal pennation angles for the TA, MG, and Sol were significantly greater for the men than for the women. Optimal pennation angles for the TA, LG, MG, and Sol for the male subjects were 14.3 degrees, 23.7 degrees, 34.6 degrees, and 40.1 degrees respectively, whereas values of 12.1 degrees, 16.3 degrees, 27.3 degrees, and 26.3 degrees were recorded for the female subjects. The results of this study suggest the following: (1) similar values for pennation angle can be used for the right and left TA, LG, MG, and Sol; (2) pennation angle is significantly greater at MVC than at rest for all muscles tested; and (3) sex-specific values for optimal pennation angle should be used when modeling the force-generating potential of the primary muscles responsible for ankle plantar and dorsiflexion.  相似文献   

5.
A large inter-individual variation is seen in muscle fascicle length of the athletes but the reasons for this phenomenon are unclear. The purpose of this study was to determine whether genetic factors contribute to the variances in muscle architectural characteristics. Nine monozygous twin pairs (3 males and 6 females), mean age 23 years (range 17-40) were studied. Fascicle length, pennation angle, and muscle thickness of the medial (MG) and lateral (LG) gastrocnemius muscles were measured in vivo by B-mode ultrasound. In the LG muscle intrapair resemblance (P < 0.01) for fascicle length (r = 0.98), pennation angle (r = 0.94) and muscle thickness (r = 0.86) were observed. In MG muscle, however, there was no intrapair resemblance for fascicle length (r = 0.66, P > 0.05), although pennation angle (r = 0.73, P < 0.05) and muscle thickness (r = 0.86, P < 0.01) were significant. Mean percent intrapair difference in LG and MG muscles were 1.8% and 5.1% for fascicle length, 11.3% and 12.3% for pennation angle and 12.4% and 9.9% for muscle thickness, respectively. There is intrapair difference between muscle thickness and pennation angle in both MG (r = 0.69, P < 0.05) and LG (r = 0.70, P < 0.05) muscles. However, no significant correlation was observed for intrapair difference between muscle thickness and fascicle length in both muscles (MG, r = 0.46; LG, r = 0.40). It appears that genetic predisposition is the predominant factor for the determination of muscle fascicle length. However, a lack of intrapair resemblance in MG fascicle length raises the possibility that fascicle length may be further influenced by external environmental factors such as physical training.  相似文献   

6.
Human movement requires an ongoing, finely tuned interaction between muscular and tendinous tissues, so changes in the properties of either tissue could have important functional consequences. One condition that alters the functional demands placed on lower limb muscle-tendon units is the use of high-heeled shoes (HH), which force the foot into a plantarflexed position. Long-term HH use has been found to shorten medial gastrocnemius muscle fascicles and increase Achilles tendon stiffness, but the consequences of these changes for locomotor muscle-tendon function are unknown. This study examined the effects of habitual HH use on the neuromechanical behavior of triceps surae muscles during walking. The study population consisted of 9 habitual high heel wearers who had worn shoes with a minimum heel height of 5 cm at least 40 h/wk for a minimum of 2 yr, and 10 control participants who habitually wore heels for less than 10 h/wk. Participants walked at a self-selected speed over level ground while ground reaction forces, ankle and knee joint kinematics, lower limb muscle activity, and gastrocnemius fascicle length data were acquired. In long-term HH wearers, walking in HH resulted in substantial increases in muscle fascicle strains and muscle activation during the stance phase compared with barefoot walking. The results suggest that long-term high heel use may compromise muscle efficiency in walking and are consistent with reports that HH wearers often experience discomfort and muscle fatigue. Long-term HH use may also increase the risk of strain injuries.  相似文献   

7.
The architectural properties of the triceps surae muscle were studied in vivo in groups of healthy subjects (eight men) and patients with locomotor function disorders (four men and four women) with the ankle joint positioned at a plantar flexion 0° and the knee set at 90° (neutral position). In this position, using ultrasonic scanning, longitudinal ultrasonic images of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles were obtained when the subject was relaxed (the passive state) or performed isometric plantar flexion (50% of the maximum voluntary contraction (MVC), the active state). The fascicle lengths, fascicle angles, and muscle thickness were determined. In the passive state, the fascicle lengths of the MG, LG, and Sol muscles in the group of healthy subjects were 33, 35, and 30 mm and the pennation angle, 25°, 19°, and 25°; in the group of patients with motor disorders, 38, 39, and 29 mm and 21°, 19°, and 24°, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects were 15, 13, and 12 mm, and in the group of patients with motor disorders, 14, 12, and 14 mm, respectively. In the active state (50% of the MVC), the MG, LG, and Sol fiber lengths in the group of healthy subjects shortened by 31, 24, and 18%; the fiber pennation angle increased by 60, 41, and 41%, respectively. In the group of patients with motor disorders, the fiber lengths shortened by 28, 14, and 18% and the fiber pennation angle decreased by 28, 26, and 36%, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects increased by 9, 22, and 18%, while in the group of patients with motor disorders the thickness decreased by 4% in the MG and increased by 11 and 4% in the LG and Sol muscles, respectively. Different fiber lengths and pennation angles and their changes upon contraction might be related to differences in the force-producing capabilities of the muscles and the viscoelastic properties of muscle tendons and aponeuroses.  相似文献   

8.
This study aimed to investigate whether fatigue-induced changes in synergistic muscle forces match their tendon elongation. The medial gastrocnemius muscle (MG) was fatigued by repeated electrical stimulation (1 min×5 times: interval 30 s, intensity: 20–30% of maximal voluntary plantar flexion torque) applied at the muscle belly under a partial occlusion of blood vessels. Before and after the MG fatigue task, ramp isometric contractions were performed voluntarily, during which tendon elongations were determined by ultrasonography, along with recordings of the surface EMG activities of MG, the soleus (SOL) and the lateral gastrocnemius (LG) muscles. The tendon elongation of MG and SOL in post-fatigue ramp was similar, although evoked MG forces dropped nearly to zero. In addition, for a given torque output, the tendon elongation of SOL significantly decreased while that of LG did not, although the activation levels of both muscles had increased. Results suggest that the fatigue-induced changes in force of the triceps surae muscles do not match their tendon elongation. These results imply that the tendons of the triceps surae muscles are mechanically coupled even after selective fatigue of a single muscle.  相似文献   

9.
We used a lower limb robotic exoskeleton controlled by the wearer's muscle activity to study human locomotor adaptation to disrupted muscular coordination. Ten healthy subjects walked while wearing a pneumatically powered ankle exoskeleton on one limb that effectively increased plantar flexor strength of the soleus muscle. Soleus electromyography amplitude controlled plantar flexion assistance from the exoskeleton in real time. We hypothesized that subjects' gait kinematics would be initially distorted by the added exoskeleton power, but that subjects would reduce soleus muscle recruitment with practice to return to gait kinematics more similar to normal. We also examined the ability of subjects to recall their adapted motor pattern for exoskeleton walking by testing subjects on two separate sessions, 3 days apart. The mechanical power added by the exoskeleton greatly perturbed ankle joint movements at first, causing subjects to walk with significantly increased plantar flexion during stance. With practice, subjects reduced soleus recruitment by approximately 35% and learned to use the exoskeleton to perform almost exclusively positive work about the ankle. Subjects demonstrated the ability to retain the adapted locomotor pattern between testing sessions as evidenced by similar muscle activity, kinematic and kinetic patterns between the end of the first test day and the beginning of the second. These results demonstrate that robotic exoskeletons controlled by muscle activity could be useful tools for testing neural mechanisms of human locomotor adaptation.  相似文献   

10.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

11.
The purposes of this study were 1) to quantify the volume of activated parts within a whole muscle and 2) to examine activated area distributions along the length of muscle. Seven male subjects performed five sets of 10 repetitions of a single-leg calf-raise exercise with the knee fully extended. Transverse relaxation time (T2)-weighted spin echo images were acquired before and immediately after the exercise. A range of pixels with a T2 greater than the mean +1 SD of the region of interest (ROI) from the preexercise image and pixels with a T2 lower than the mean + SD of the ROI from the postexercise image were defined as "active" muscle. The active muscle images were three dimensionally reconstructed, from which the volume of the activated muscle was determined for individual triceps surae (TS) muscles. Our data indicate that approximately 46% of the medial gastrocnemius (MG) muscle was activated during the exercise, with activation of the lateral gastrocnemius (LG) and soleus (Sol) muscles being approximately 35%. In the MG, distal portions had a greater percentage area of activated muscle than the proximal portions (P < 0.05), which was consistent with the results regarding electromyogram activity. In contrast, regional activation differences were not observed in the LG and Sol. These findings suggest that the amounts of activated muscle and its distribution would be different among TS muscles.  相似文献   

12.
Animals commonly move over a range of speeds, and encounter considerable variation in habitat structure, such as inclines. Hindlimb kinematics and muscle function in diverse groups of vertebrates are affected by these changes in behavior and habitat structure, providing a fruitful source of variation for studying the integration of kinematics and muscle function. While it has been observed in a variety of vertebrates that muscle length change can be minimal during locomotion, it is unclear how, and to what degree, in vivo muscle length change patterns are integrated with kinematics. We tested the hypothesis that the length of the turkey lateral gastrocnemius (LG), a biarticular muscle that has moments at the ankle and knee, is not solely affected by changes in joint kinematics. We recorded in vivo muscle length changes (using sonomicrometry) and hindlimb movements (using high-speed video) of wild turkeys running on various inclines, and at different speeds. We quantified the relationship between joint angle (knee and ankle separately) and muscle length in freshly euthanized specimens, and then applied an empirically derived correction for changes in pennation angle and tendon strain during locomotion to improve the accuracy of our predicted lengths. We estimated muscle length at four points during each stride and then compared these values with those measured directly. Other than during swing, the predicted changes in muscle length calculated from the changes in joint kinematics did not correspond with our measured values of LG length. Therefore, the lengths at which the LG operates in turkeys are not determined entirely by kinematics. In addition to strain in series elastic components, we hypothesize that heterogeneous strain within muscles, interactions between muscles and muscle pennation angle all contribute to the nonlinear relationship between muscle length changes and kinematics.  相似文献   

13.
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals.  相似文献   

14.
Investigations using quadrupeds have suggested that the motor programs used for slope walking differ from that used for level walking. This idea has not yet been explored in humans. The aim of this study was to use electromyographic (EMG) signals obtained during level and slope walking to complement previously published joint angle and joint moment data in elucidating such control strategies. Nine healthy volunteers walked on an instrumented ramp at each of five grades (-39%, -15%, 0%, +15%, +39%). EMG activity was recorded unilaterally from eight lower limb muscles (gluteus maximus (GM), rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), semimembranosus (SM), soleus (Sol), medial gastrocnemius (MG), and tibialis anterior (TA)). The burst onset, duration, and mean activity were calculated for each burst in every trial. The burst characteristics were then averaged within each grade and subject and submitted to repeated measures ANOVAs to assess the effect of grade (alpha=0.05, a priori). Power production increased during upslope walking, as did the mean activity and burst durations of most muscles. In this case, the changes in muscle activity patterns were not predictable based on the changes in joint moments because of the activation of biarticular muscles as antagonists. During downslope walking power absorption increased, as did knee extensor activity (mean and duration) and the duration of the ankle plantarflexor activity. The changes in muscle activity during this task were directly related to the changes in joint moments. Collectively these data suggest that the nervous system uses different control strategies to successfully locomote on slopes, and that joint power requirements are an important factor in determining these control strategies.  相似文献   

15.
One proposed mechanism of patellofemoral pain, increased stress in the joint, is dependent on forces generated by the quadriceps muscles. Describing causal relationships between muscle forces, tissue stresses, and pain is difficult due to the inability to directly measure these variables in vivo. The purpose of this study was to estimate quadriceps forces during walking and running in a group of male and female patients with patellofemoral pain (n=27, 16 female; 11 male) and compare these to pain-free controls (n=16, 8 female; 8 male). Subjects walked and ran at self-selected speeds in a gait laboratory. Lower limb kinematics and electromyography (EMG) data were input to an EMG-driven musculoskeletal model of the knee, which was scaled and calibrated to each individual to estimate forces in 10 muscles surrounding the joint. Compared to controls, the patellofemoral pain group had greater co-contraction of quadriceps and hamstrings (p=0.025) and greater normalized muscle forces during walking, even though the net knee moment was similar between groups. Muscle forces during running were similar between groups, but the net knee extension moment was less in the patellofemoral pain group compared to controls. Females displayed 30–50% greater normalized hamstring and gastrocnemius muscle forces during both walking and running compared to males (p<0.05). These results suggest that some patellofemoral pain patients might experience greater joint contact forces and joint stresses than pain-free subjects. The muscle force data are available as supplementary material.  相似文献   

16.
Despite the extensive electromyographic research that has addressed limb muscle function during primate quadrupedalism, the role of the back muscles in this locomotor behavior has remained undocumented. We report here the results of an electromyographic (EMG) analysis of three intrinsic back muscles (multifidus, longissimus, and iliocostalis) in the baboon (Papio anubis), chimpanzee (Pan troglodytes), and orangutan (Pongo pygmaeus) during quadrupedal walking. The recruitment patterns of these three back muscles are compared to those reported for the same muscles during nonprimate quadrupedalism. In addition, the function of the back muscles during quadrupedalism and bipedalism in the two hominoids is compared. Results indicate that the back muscles restrict trunk movements during quadrupedalism by contracting with the touchdown of one or both feet, with more consistent activity associated with touchdown of the contralateral foot. Moreover, despite reported differences in their gait preferences and forelimb muscle EMG patterns, primates and nonprimate mammals recruit their back muscles in an essentially similar fashion during quadrupedal walking. These quadrupedal EMG patterns also resemble those reported for chimpanzees, gibbons and humans (but not orangutans) walking bipedally. The fundamental similarity in back muscle function across species and locomotor behaviors is consistent with other data pointing to conservatism in the evolution of the neural control of tetrapod limb movement, but does not preclude the suggestion (based on forelimb muscle EMG and spinal lesion studies) that some aspects of primate neural circuitry are unique. © 1994 Wiley-Liss, Inc.  相似文献   

17.
The length-force relations of nine different skeletal muscles in the hindlimb of the cat were determined experimentally, with electrical stimulation of the sciatic nerve as the activation mode. It was shown that the active-, passive-, and total-force patterns varied widely among the muscles. The tibialis posterior (TP), medial and lateral gastrocnemius (MG, LG) and flexor digitorum longus (FDL) had a symmetric active-force curve, whereas the tibialis anterior (TA), peroneus brevis (PB), peroneus longus (PL), extensor digitorum longus (EDL), and soleus (SOL) had an asymmetric curve which exhibits about 25% of the maximal isometric force at extreme lengths. The SOL, EDL, and LG had a low-level passive force which appeared at short muscle length, whereas all other muscles exhibited initial passive force just before the optimal length. The total force was rising quasi-linearly for the SOL, whereas the other muscles exhibited an intermediate plateau about the optimal length. The LG and FDL had a substantial but temporary intermediate dip in the total force as the muscle was elongated past the optimal length. The elongation range of the various muscles also varied, ranging from +/- 15 to +/- 30% of the optimal length. The elongation range was symmetric for the FDL, LG, MG, TP, SOL, and EDL, and asymmetric for the PL, PB, and TA, being -12 to + 17%, -12 to + 17%, and -35 to + 12%, respectively. Two different models which incorporate muscle architecture were successfully fitted to the experimental data of the muscles except for the MG and TA. The architecture of these two muscles is highly nonhomogeneous and contains compartments with two pennation patterns or two different optimal lengths. New models, which add spatially and temporally the individual characteristics of each compartment of the muscles, were constructed for these two muscles. The new models demonstrated high correlation to the experimental data obtained from the MG and TA. It was concluded that the length-force relation varies widely among various skeletal muscles and is probably dependent on the primary function of the muscle in the context of integrated movement; this is a manifestation of architectural factors such as fiber pennation pattern and angle, cross-sectional area, ratio of muscle to tendon length, distribution of the fiber length within the muscle and compartmental pennation.  相似文献   

18.
During downhill running, manoeuvring, negotiation of obstacles and landings from a jump, mechanical energy is dissipated via active lengthening of limb muscles. Tendon compliance provides a ‘shock-absorber’ mechanism that rapidly absorbs mechanical energy and releases it more slowly as the recoil of the tendon does work to stretch muscle fascicles. By lowering the rate of muscular energy dissipation, tendon compliance likely reduces the risk of muscle injury that can result from rapid and forceful muscle lengthening. Here, we examine how muscle–tendon mechanics are modulated in response to changes in demand for energy dissipation. We measured lateral gastrocnemius (LG) muscle activity, force and fascicle length, as well as leg joint kinematics and ground-reaction force, as turkeys performed drop-landings from three heights (0.5–1.5 m centre-of-mass elevation). Negative work by the LG muscle–tendon unit during landing increased with drop height, mainly owing to greater muscle recruitment and force as drop height increased. Although muscle strain did not increase with landing height, ankle flexion increased owing to increased tendon strain at higher muscle forces. Measurements of the length–tension relationship of the muscle indicated that the muscle reached peak force at shorter and likely safer operating lengths as drop height increased. Our results indicate that tendon compliance is important to the modulation of energy dissipation by active muscle with changes in demand and may provide a mechanism for rapid adjustment of function during deceleration tasks of unpredictable intensity.  相似文献   

19.
In this study, the frontal plane moment arms of tibialis anterior (TA) and the lateral and medial heads of gastrocnemius (LG and MG) were determined using ultrasonography of ten healthy subjects. Analysis of variance was performed to investigate the effects of frontal plane angle, muscle activity, and plantarflexion angle on inversion–eversion moment arm for each muscle. The moment arms of each muscle were found to vary with frontal plane angle (all p<0.001). TA and LG exhibited eversion moment arms when the foot was everted, but MG was found to have a slight inversion moment arm in this position. As the ankle rotated from 0° to 20° inversion, the inversion moment arm of each increased, indicating that the three muscles became increasingly effective inverters. In neutral position, the inverter moment arm of MG was greater than that of LG (p=0.001). Muscle activity had a significant effect on both LG and MG moment arm at all frontal plane positions (all p0.005). These results demonstrate the manner in which frontal plane moment arms of gastrocnemius and TA differ across the frontal plane range of motion in healthy subjects. This method for assessing muscle action in vivo used in this study may prove useful for subject-specific planning of surgical treatments for frontal plane foot and ankle deformities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号