首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Bayesian model-based clustering approach is proposed for identifying differentially expressed genes in meta-analysis. A Bayesian hierarchical model is used as a scientific tool for combining information from different studies, and a mixture prior is used to separate differentially expressed genes from non-differentially expressed genes. Posterior estimation of the parameters and missing observations are done by using a simple Markov chain Monte Carlo method. From the estimated mixture model, useful measure of significance of a test such as the Bayesian false discovery rate (FDR), the local FDR (Efron et al., 2001), and the integration-driven discovery rate (IDR; Choi et al., 2003) can be easily computed. The model-based approach is also compared with commonly used permutation methods, and it is shown that the model-based approach is superior to the permutation methods when there are excessive under-expressed genes compared to over-expressed genes or vice versa. The proposed method is applied to four publicly available prostate cancer gene expression data sets and simulated data sets.  相似文献   

2.
3.
Dimmeler S  Zeiher AM 《Cell》2007,130(3):401-402
Oxidative stress due to the generation of reactive oxygen species has been implicated in many diseases. Rajasekaran et al. (2007) now make the surprising discovery that its counterpart "reductive stress," caused by an increase in reduced glutathione, contributes to cardiomyopathy triggered by protein aggregation.  相似文献   

4.
5.
The safety of primates which are captured and released in the wild is a topic of concern for many field primatologists. Our article and the recent commentary by Fernandez-Duque et al. contribute to the discussion. Although Fernandez-Duque et al. found a slightly higher rate of fatalities (2.5 %) than Cunningham et al. (2.0 %), their combined rate of fatal and serious injuries was lower (4.0 % vs 5.0 %). The differences in rate are not substantial, given limitations of the data. However, as Fernandez-Duque et al. highlight the need for standardizing methods of analysis, we believe the methods they suggest merit careful consideration. We agree that variation in size, habitat, and the experience of the darting team are important factors. Cunningham et al. reported the influence of these factors on injury and fatality rates. There are, however, some important differences in the methods of Cunningham et al. and Fernandez-Duque et al. We believe it is important to 1) acknowledge possible bias in the data, 2) report results of serious complications that arise during capture, 3) report results of capturing medically compromised primates, and 4) report rates of primates falling to the ground.  相似文献   

6.

Background

RNA sequencing (RNA-seq) is the current gold-standard method to quantify gene expression for expression quantitative trait locus (eQTL) studies. However, a potential caveat in these studies is that RNA-seq reads carrying the non-reference allele of variant loci can have lower probability to map correctly to the reference genome, which could bias gene quantifications and cause false positive eQTL associations. In this study, we analyze the effect of this allelic mapping bias in eQTL discovery.

Results

We simulate RNA-seq read mapping over 9.5 M common SNPs and indels, with 15.6% of variants showing biased mapping rate for reference versus non-reference reads. However, removing potentially biased RNA-seq reads from an eQTL dataset of 185 individuals has a very small effect on gene and exon quantifications and eQTL discovery. We detect only a handful of likely false positive eQTLs, and overall eQTL SNPs show no significant enrichment for high mapping bias.

Conclusion

Our results suggest that RNA-seq quantifications are generally robust against allelic mapping bias, and that this does not have a severe effect on eQTL discovery. Nevertheless, we provide our catalog of putatively biased loci to allow better controlling for mapping bias to obtain more accurate results in future RNA-seq studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0467-2) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background  

Many procedures for finding differentially expressed genes in microarray data are based on classical or modified t-statistics. Due to multiple testing considerations, the false discovery rate (FDR) is the key tool for assessing the significance of these test statistics. Two recent papers have generalized two aspects: Storey et al. (2005) have introduced a likelihood ratio test statistic for two-sample situations that has desirable theoretical properties (optimal discovery procedure, ODP), but uses standard FDR assessment; Ploner et al. (2006) have introduced a multivariate local FDR that allows incorporation of standard error information, but uses the standard t-statistic (fdr2d). The relationship and relative performance of these methods in two-sample comparisons is currently unknown.  相似文献   

8.
J I Weller  J Z Song  D W Heyen  H A Lewin  M Ron 《Genetics》1998,150(4):1699-1706
Saturated genetic marker maps are being used to map individual genes affecting quantitative traits. Controlling the "experimentwise" type-I error severely lowers power to detect segregating loci. For preliminary genome scans, we propose controlling the "false discovery rate," that is, the expected proportion of true null hypotheses within the class of rejected null hypotheses. Examples are given based on a granddaughter design analysis of dairy cattle and simulated backcross populations. By controlling the false discovery rate, power to detect true effects is not dependent on the number of tests performed. If no detectable genes are segregating, controlling the false discovery rate is equivalent to controlling the experimentwise error rate. If quantitative loci are segregating in the population, statistical power is increased as compared to control of the experimentwise type-I error. The difference between the two criteria increases with the increase in the number of false null hypotheses. The false discovery rate can be controlled at the same level whether the complete genome or only part of it has been analyzed. Additional levels of contrasts, such as multiple traits or pedigrees, can be handled without the necessity of a proportional decrease in the critical test probability.  相似文献   

9.
Zou G  Zuo Y 《Genetics》2006,172(1):687-691
With respect to the multiple-tests problem, recently an increasing amount of attention has been paid to control the false discovery rate (FDR), the positive false discovery rate (pFDR), and the proportion of false positives (PFP). The new approaches are generally believed to be more powerful than the classical Bonferroni one. This article focuses on the PFP approach. It demonstrates via examples in genetic association studies that the Bonferroni procedure can be more powerful than the PFP-control one and also shows the intrinsic connection between controlling the PFP and controlling the overall type I error rate. Since controlling the PFP does not necessarily lead to a desired power level, this article addresses the design issue and recommends the sample sizes that can attain the desired power levels when the PFP is controlled. The results in this article also provide rough guidance for the sample sizes to achieve the desired power levels when the FDR and especially the pFDR are controlled.  相似文献   

10.
Autophagy involves lysosomal-mediated degradation of cellular components and contributes to host immunity. Some pathogens avoid autophagy-mediated killing, while others exploit it to acquire host cell nutrients. Starr et?al. reveal that the intracellular bacterial pathogen Brucella abortus can "hitch a ride" with autophagy, subverting autophagy machinery to spread from cell to cell (Starr et?al., 2012).  相似文献   

11.
Li M  Stoneking M 《Genome biology》2012,13(5):R34-15
We propose a new method that incorporates population re-sequencing data, distribution of reads, and strand bias in detecting low-level mutations. The method can accurately identify low-level mutations down to a level of 2.3%, with an average coverage of 500×, and with a false discovery rate of less than 1%. In addition, we also discuss other problems in detecting low-level mutations, including chimeric reads and sample cross-contamination, and provide possible solutions to them.  相似文献   

12.
Many published research results are false (Ioannidis, 2005), and controversy continues over the roles of replication and publication policy in improving the reliability of research. Addressing these problems is frustrated by the lack of a formal framework that jointly represents hypothesis formation, replication, publication bias, and variation in research quality. We develop a mathematical model of scientific discovery that combines all of these elements. This model provides both a dynamic model of research as well as a formal framework for reasoning about the normative structure of science. We show that replication may serve as a ratchet that gradually separates true hypotheses from false, but the same factors that make initial findings unreliable also make replications unreliable. The most important factors in improving the reliability of research are the rate of false positives and the base rate of true hypotheses, and we offer suggestions for addressing each. Our results also bring clarity to verbal debates about the communication of research. Surprisingly, publication bias is not always an obstacle, but instead may have positive impacts—suppression of negative novel findings is often beneficial. We also find that communication of negative replications may aid true discovery even when attempts to replicate have diminished power. The model speaks constructively to ongoing debates about the design and conduct of science, focusing analysis and discussion on precise, internally consistent models, as well as highlighting the importance of population dynamics.  相似文献   

13.
PURPOSE OF REVIEW: To highlight the development in microarray data analysis for the identification of differentially expressed genes, particularly via control of false discovery rate. RECENT FINDINGS: The emergence of high-throughput technology such as microarrays raises two fundamental statistical issues: multiplicity and sensitivity. We focus on the biological problem of identifying differentially expressed genes. First, multiplicity arises due to testing tens of thousands of hypotheses, rendering the standard P value meaningless. Second, known optimal single-test procedures such as the t-test perform poorly in the context of highly multiple tests. The standard approach of dealing with multiplicity is too conservative in the microarray context. The false discovery rate concept is fast becoming the key statistical assessment tool replacing the P value. We review the false discovery rate approach and argue that it is more sensible for microarray data. We also discuss some methods to take into account additional information from the microarrays to improve the false discovery rate. SUMMARY: There is growing consensus on how to analyse microarray data using the false discovery rate framework in place of the classical P value. Further research is needed on the preprocessing of the raw data, such as the normalization step and filtering, and on finding the most sensitive test procedure.  相似文献   

14.
We develop an approach for microarray differential expression analysis, i.e. identifying genes whose expression levels differ between two or more groups. Current approaches to inference rely either on full parametric assumptions or on permutation-based techniques for sampling under the null distribution. In some situations, however, a full parametric model cannot be justified, or the sample size per group is too small for permutation methods to be valid. We propose a semi-parametric framework based on partial mixture estimation which only requires a parametric assumption for the null (equally expressed) distribution and can handle small sample sizes where permutation methods break down. We develop two novel improvements of Scott's minimum integrated square error criterion for partial mixture estimation [Scott, 2004a,b]. As a side benefit, we obtain interpretable and closed-form estimates for the proportion of EE genes. Pseudo-Bayesian and frequentist procedures for controlling the false discovery rate are given. Results from simulations and real datasets indicate that our approach can provide substantial advantages for small sample sizes over the SAM method of Tusher et al. [2001], the empirical Bayes procedure of Efron and Tibshirani [2002], the mixture of normals of Pan et al. [2003] and a t-test with p-value adjustment [Dudoit et al., 2003] to control the FDR [Benjamini and Hochberg, 1995].  相似文献   

15.
Qian HR  Huang S 《Genomics》2005,86(4):495-503
Current high-throughput techniques such as microarray in genomics or mass spectrometry in proteomics usually generate thousands of hypotheses to be tested simultaneously. The usual purpose of these techniques is to identify a subset of interesting cases that deserve further investigation. As a consequence, the control of false positives among the tests called "significant" becomes a critical issue for researchers. Over the past few years, several false discovery rate (FDR)-controlling methods have been proposed; each method favors certain scenarios and is introduced with the purpose of improving the control of FDR at the targeted level. In this paper, we compare the performance of the five FDR-controlling methods proposed by Benjamini et al., the qvalue method proposed by Storey, and the traditional Bonferroni method. The purpose is to investigate the "observed" sensitivity of each method on typical microarray experiments in which the majority (or all) of the truth is unknown. Based on two well-studied microarray datasets, it is found that in terms of the "apparent" test power, the ranking of the FDR methods is given as Step-down相似文献   

16.
Partially paired data sets often occur in microarray experiments (Kim et al., 2005; Liu, Liang and Jang, 2006). Discussions of testing with partially paired data are found in the literature (Lin and Stivers 1974; Ekbohm, 1976; Bhoj, 1978). Bhoj (1978) initially proposed a test statistic that uses a convex combination of paired and unpaired t statistics. Kim et al. (2005) later proposed the t3 statistic, which is a linear combination of paired and unpaired t statistics, and then used it to detect differentially expressed (DE) genes in colorectal cancer (CRC) cDNA microarray data. In this paper, we extend Kim et al.'s t3 statistic to the Hotelling's T2 type statistic Tp for detecting DE gene sets of size p. We employ Efron's empirical null principle to incorporate inter-gene correlation in the estimation of the false discovery rate. Then, the proposed Tp statistic is applied to Kim et al's CRC data to detect the DE gene sets of sizes p=2 and p=3. Our results show that for small p, particularly for p=2 and marginally for p=3, the proposed Tp statistic compliments the univariate procedure by detecting additional DE genes that were undetected in the univariate test procedure. We also conduct a simulation study to demonstrate that Efron's empirical null principle is robust to the departure from the normal assumption.  相似文献   

17.
18.

Background

Cross-sectional surveys utilizing biomarkers that test for recent infection provide a convenient and cost effective way to estimate HIV incidence. In particular, the BED assay has been developed for this purpose. Controversy surrounding the way in which false positive results from the biomarker should be handled has lead to a number of different estimators that account for imperfect specificity. We compare the estimators proposed by McDougal et al., Hargrove et al. and McWalter & Welte.

Methodology/Principal Findings

The three estimators are analyzed and compared. An identity showing a relationship between the calibration parameters in the McDougal methodology is shown. When the three estimators are tested under a steady state epidemic, which includes individuals who fail to progress on the biomarker, only the McWalter/Welte method recovers an unbiased result.

Conclusions/Significance

Our analysis shows that the McDougal estimator can be reduced to a formula that only requires calibration of a mean window period and a long-term specificity. This allows simpler calibration techniques to be used and shows that all three estimators can be expressed using the same set of parameters. The McWalter/Welte method is applicable under the least restrictive assumptions and is the least prone to bias of the methods reviewed.  相似文献   

19.
Nagappan G  Woo NH  Lu B 《Neuron》2008,57(4):477-479
While Trk receptors can be activated in a neurotrophin-independent manner through "transactivation" by GPCR ligands, its physiological significance in the brain remains unknown. Huang et al. have now identified a novel mechanism of TrkB transactivation. They show that zinc ions can transactivate TrkB independent of neurotrophins and that such a transactivation is important for mossy fiber long-term potentiation (LTP).  相似文献   

20.
The power of QTL mapping by a mixed-model approach has been studied for hybrid crops but remains unknown in self-pollinated crops. Our objective was to evaluate the usefulness of mixed-model QTL mapping in the context of a breeding program for a self-pollinated crop. Specifically, we simulated a soybean (Glycine max L. Merr.) breeding program and applied a mixed-model approach that comprised three steps: variance component estimation, single-marker analyses, and multiple-marker analysis. Average power to detect QTL ranged from <1 to 47% depending on the significance level (0.01 or 0.0001), number of QTL (20 or 80), heritability of the trait (0.40 or 0.70), population size (600 or 1,200 inbreds), and number of markers (300 or 600). The corresponding false discovery rate ranged from 2 to 43%. Larger populations, higher heritability, and fewer QTL controlling the trait led to a substantial increase in power and to a reduction in the false discovery rate and bias. A stringent significance level reduced both the power and false discovery rate. There was greater power to detect major QTL than minor QTL. Power was higher and the false discovery rate was lower in hybrid crops than in self-pollinated crops. We conclude that mixed-model QTL mapping is useful for gene discovery in plant breeding programs of self-pollinated crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号