首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals of many species copulate with multiple mates (polygamy). Multiple mating by females (polyandry) promotes sperm competition, which has broad implications for the evolution of the ejaculate. Multigenerational studies of polygamous insects have shown that the removal of sexual selection has profound fitness consequences for females, and can lead to an evolutionary divergence in ejaculate traits. However, the evolutionary implications of polygamous mating across successive generations have not before been demonstrated in a vertebrate. By manipulating the mating system we were able to reinstate postcopulatory sexual selection in a house mouse population that had a long history of enforced monogamy. Following eight generations of selection, we performed sperm quality assays on males from both the polygamous and monogamous selection lines. We applied a principal component analysis to summarize the variation among 12 correlated sperm traits, and found that males evolving under sperm competition had significantly larger scores on the first axis of variation, reflecting greater numbers of epididymal sperm and increased sperm motility, compared to males from lines under relaxed selection. Moreover, we found a correlated response in the size of litters born to females in lines subject to sperm competition. Thus, we present significant evidence that sperm competition has profound fitness consequences for both male and female house mice.  相似文献   

2.
When females mate with multiple males both pre- and post-copulatory sexual selections occur. It has been suggested that females benefit from polyandry when better-quality males are successful in sperm competition and sire high-quality offspring. Indeed, studies of experimental evolution have confirmed that sperm competition selects for both increased ejaculate quality and elevated offspring viability. Fewer investigations have explored whether these fitness benefits are evident beyond early life-history stages. Here, I used house mice (Mus domesticus) from selection lines that had been evolving for 25 generations under either polygamy or monogamy to test whether females preferred males from lines that had evolved with sperm competition. Males from the polygamous lines had previously been shown to achieve a fitness advantage under semi-natural conditions, deeming them to be of high genetic quality and leading to the a priori expectation that females would prefer males that had evolved with sperm competition compared with males that had not. Contrary to expectation, the data showed that sexually receptive females spent more time associating with males from the monogamous lines. This unexpected but interesting result is discussed in relation to sperm competition theory that predicts a trade-off between male investment in pre- and post-copulatory sexually selected traits.  相似文献   

3.
Although mating is costly, multiple mating by females is a taxonomically widespread phenomenon. Theory has suggested that polyandry may allow females to gain genetic benefits for their offspring, and thus offset the costs associated with this mating strategy. For example, the good sperm hypothesis posits that females benefit from mating multiply when genetically superior males have increased success in sperm competition and produce high quality offspring. We applied the powerful approach of experimental evolution to explore the potential for polyandry to drive evolutionary increases in female fitness in house mice, Mus domesticus. We maintained polygamously mated and monogamously mated selection lines of house mice for 14 generations, before determining whether selection history could account for divergence in embryo viability. We found that males from lineages evolving with post-copulatory sexual selection sire offspring with increased viability, suggesting that polyandry results in the production of higher quality offspring and thus provides long-term fitness benefits to females.  相似文献   

4.
An evolutionary conflict often exists between the sexes in regard to female mating patterns. Females can benefit from polyandry, whereas males mating with polyandrous females lose reproductive opportunities because of sperm competition. Where this conflict occurs, the evolution of mechanisms whereby males can control female remating, often at a fitness cost to the female, are expected to evolve. The fitness cost to the female will be increased in systems where a few high status males monopolise mating opportunities and thus have limited sperm supplies. Here we show that in the cockroach Nauphoeta cinerea, a species where males enforce female monogamy in the first reproductive cycle, males that have become sperm depleted continue to be able to manipulate female remating behaviour. Although the manipulation severely decreases fecundity in females mated to sperm-depleted males, males benefit, increasing their relative fitness by preventing other males from reproducing. Our results suggest that there is selection on maintaining the mechanism of manipulation rather than maintaining sperm numbers. Taken with previous research on sexual conflict in N. cinerea, this study suggests that the causes and consequences of sexual conflict are complex and can change across the life history of an individual.  相似文献   

5.
Sexual selection is thought to favor the evolution of secondary sexual traits in males that contribute to mating success. In species where females mate with more than one male, sexual selection also continues after copulation in the form of sperm competition and cryptic female choice. Theory suggests that sperm competition should favor traits such as testes size and sperm production that increase a male's competitive fertilization success. Studies of experimental evolution offer a powerful approach for assessing evolutionary responses to variation in sexual selection pressures. Here we removed sexual selection by enforcing monogamy on replicate lines of a naturally polygamous horned beetle, Onthophagus taurus, and monitoring male investment in their testes for 21 generations. Testes size decreased in monogamous lines relative to lines in which sexual selection was allowed to continue. Differences in testes size were dependent on selection history and not breeding regime. Males from polygamous lines also had a competitive fertilization advantage when in sperm competition with males from monogamous lines. Females from polygamous lines produced sons in better condition, and those from monogamous lines increased their sons condition by mating polygamously. Rather than being costly for females, multiple mating appears to provide females with direct and/or indirect benefits. Neither body size nor horn size diverged between our monogamous and polygamous lines. Our data show that sperm competition does drive the evolution of testes size in onthophagine beetles, and provide general support for sperm competition theory.  相似文献   

6.
Whether sexual selection increases or decreases female fitness is determined by the occurrence and relative importance of sexual-conflict processes and the ability of females to choose high-quality males. Experimentally enforced polyandry and monogamy have previously been shown to cause rapid evolution in the yellow dung fly Scathophaga stercoraria. Flies from polyandrous lines invested more in reproductive tissue, and this investment influenced paternity in sperm competition, but came at a cost to immune function. While some fitness consequences of enforced polyandry or monogamy have been examined when flies mate multiply, the consequences for female fitness when singly copulated remain unexplored. Under a good-genes scenario females from polyandrous lines should be of higher general quality and should outperform females from monogamous lines even with a single copulation. Under sexual conflict, costly adaptations will afford no advantages when females are allowed to mate only once. We investigate the lifetime reproductive success and longevity of females evolving under enforced monogamy or polyandry when mating once with males from these selection regimes. Females from polyandrous lines were found to have lower fitness than their monogamous counterparts when mating once. They died earlier and produced significantly fewer eggs and offspring. These results suggest that sexual conflict probably drove evolution under enforced polyandry as female fitness did not increase overall as expected with purely good-genes effects.  相似文献   

7.
The Darwin–Bateman paradigm recognizes competition among males for access to multiple mates as the main driver of sexual selection. Increasingly, however, females are also being found to benefit from multiple mating so that polyandry can generate competition among females for access to multiple males, and impose sexual selection on female traits that influence their mating success. Polyandry can reduce a male''s ability to monopolize females, and thus weaken male focused sexual selection. Perhaps the most important effect of polyandry on males arises because of sperm competition and cryptic female choice. Polyandry favours increased male ejaculate expenditure that can affect sexual selection on males by reducing their potential reproductive rate. Moreover, sexual selection after mating can ameliorate or exaggerate sexual selection before mating. Currently, estimates of sexual selection intensity rely heavily on measures of male mating success, but polyandry now raises serious questions over the validity of such approaches. Future work must take into account both pre- and post-copulatory episodes of selection. A change in focus from the products of sexual selection expected in males, to less obvious traits in females, such as sensory perception, is likely to reveal a greater role of sexual selection in female evolution.  相似文献   

8.

Background

Mothers that mate with multiple males often produce higher quality offspring than mothers that mate with a single male. By engaging in polyandry, mothers may increase their chances of mating with a compatible male or promote sperm competition - both of which act to increase maternal fitness via the biasing of the paternity of offspring. Surprisingly, mating with multiple males, can carry benefits without biasing paternity and may be due simply to differences in genetic diversity between monandrous and polyandrous clutches but role of genetic diversity effects in driving the benefits of polyandry remains poorly tested. Disentangling indirect, genetic benefits from genetic diversity effects is challenging but crucial if we are to understand the selection pressures acting to promote polyandry.

Methodology/Principal Findings

Here, we examine the post-fertilisation benefits of accessing the sperm of multiple males in an externally fertilising polychaete worm. Accessing the sperm of multiple males increases offspring performance but this benefit was driven entirely by genetic diversity effects and not by the biasing of paternity at fertilisation.

Conclusions/Significance

Previous studies on polyandry should be interpreted cautiously as genetic diversity effects alone can explain the benefits of polyandry yet these diversity effects may be difficult to disentangle from other mechanisms. We suggest that future studies use a modified experimental design in order to discriminate between genetic diversity effects and indirect, genetic benefits.  相似文献   

9.
Deleterious mutations can accumulate in the germline with age, decreasing the genetic quality of sperm and imposing a cost on female fitness. If these mutations also affect sperm competition ability or sperm production, then females will benefit from polyandry as it incites sperm competition and, consequently, minimizes the mutational load in the offspring. We tested this hypothesis in the guppy (Poecilia reticulata), a species characterized by polyandry and intense sperm competition, by investigating whether age affects post‐copulatory male traits and sperm competition success. Females did not discriminate between old and young males in a mate choice experiment. While old males produced longer and slower sperm with larger reserves of strippable sperm, compared to young males, artificial insemination did not reveal any effect of age on sperm competition success. Altogether, these results do not support the hypothesis that polyandry evolved in response to costs associated with mating with old males in the guppy.  相似文献   

10.
Females of many species mate with multiple males (polyandry), resulting in male–male competition extending to post‐copulation (sperm competition). Males adapt to such post‐copulatory sexual selection by altering features of their ejaculate that increase its competitiveness and/or by decreasing the risk of sperm competition through female manipulation or interference with rival male behaviour. At ejaculation, males of many species deposit copulatory plugs, which are commonly interpreted as a male adaptation to post‐copulatory competition and are thought to reduce or delay female remating. Here, we used a vertebrate model species, the house mouse, to study the consequences of copulatory plugs for post‐copulatory competition. We experimentally manipulated plugs after a female's first mating and investigated the consequences for rival male behaviour and paternity outcome. We found that even intact copulatory plugs were ineffective at preventing female remating, but that plugs influenced the rival male copulatory behaviour. Rivals facing intact copulatory plugs performed more but shorter copulations and ejaculated later than when the plug had been fully or partially removed. This suggests that the copulatory plug represents a considerable physical barrier to rival males. The paternity share of first males increased with a longer delay between the first and second males' ejaculations, indicative of fitness consequences of copulatory plugs. However, when males provided little copulatory stimulation, the incidence of pregnancy failure increased, representing a potential benefit of intense and repeated copulation besides plug removal. We discuss the potential mechanisms of how plugs influence sperm competition outcome and consequences for male copulatory behaviour.  相似文献   

11.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

12.
Price TA  Wedell N 《Genetica》2008,134(1):99-111
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.  相似文献   

13.
Price TA  Wedell N 《Genetica》2008,132(3):295-307
Females of many species mate with more than one male (polyandry), yet the adaptive significance of polyandry is poorly understood. One hypothesis to explain the widespread occurrence of multiple mating is that it may allow females to utilize post-copulatory mechanisms to reduce the risk of fertilizing their eggs with sperm from incompatible males. Selfish genetic elements (SGEs) are ubiquitous in eukaryotes, frequent sources of reproductive incompatibilities, and associated with fitness costs. However, their impact on sexual selection is largely unexplored. In this review we examine the link between SGEs, male fertility and sperm competitive ability. We show there is widespread evidence that SGEs are associated with reduced fertility in both animals and plants, and present some recent data showing that males carrying SGEs have reduced paternity in sperm competition. We also discuss possible reasons why male gametes are particularly vulnerable to the selfish actions of SGEs. The widespread reduction in male fertility caused by SGEs implies polyandry may be a successful female strategy to bias paternity against SGE-carrying males.  相似文献   

14.
Female multiple mating (polyandry) is widespread across many animal taxa and indirect genetic benefits are a major evolutionary force favouring polyandry. An incentive for polyandry arises when multiple mating leads to sperm competition that disadvantages sperm from genetically inferior mates. A reduction in genetic quality is associated with costly selfish genetic elements (SGEs), and studies in invertebrates have shown that males bearing sex ratio distorting SGEs are worse sperm competitors than wild-type males. We used a vertebrate model species to test whether females can avoid an autosomal SGE, the t haplotype, through polyandry. The t haplotype in house mice exhibits strong drive in t heterozygous males by affecting spermatogenesis and is associated with homozygous in utero lethality. We used controlled matings to test the effect of the t haplotype on sperm competitiveness. Regardless of mating order, t heterozygous males sired only 11% of zygotes when competing against wild-type males, suggesting a very strong effect of the t haplotype on sperm quality. We provide, to our knowledge, the first substantial evidence that polyandry ameliorates the harmful effects of an autosomal SGE arising through genetic incompatibility. We discuss potential mechanisms in our study species and the broader implications for the benefits of polyandry.  相似文献   

15.
BACKGROUND: Strict genetic monogamy leads to sexual harmony because any trait that decreases the fitness of one sex also decreases the fitness of the other. Any deviation from monogamy increases the potential for sexual conflict. Conflict is further enhanced by sperm competition, and given the ubiquity of this phenomenon, sexual conflict is rife. In support of theory, experimentally enforced monogamy leads to the evolution of sexual benevolence. In contrast, with multiple mating, males evolve traits causing massive female fitness reductions when female evolution is restrained. Theory also predicts increased investment in spermatogenesis when sperm competition risk is high. While this supposition has correlational support, cause and effect has yet to be firmly established. RESULTS: By enforcing monogamy or polyandry in yellow-dung-fly lines, we have shown experimentally that males from polyandrous treatments evolved larger testes. Furthermore, females from this treatment evolved larger accessory sex glands. These glands produce a spermicidal secretion, so larger glands could increase female ability to influence paternity. Using molecular techniques, we have shown that, consistent with this idea, males' success as second mates is reduced in females from the polyandrous treatment. Nevertheless, males from polyandrous lines achieve higher paternity during sperm competition, and this finding further supports the testis evolution patterns. CONCLUSIONS: These results provide direct experimental support for macroevolutionary patterns of testis size evolution. Furthermore, we have shown that sperm competition selects for traits likely to be important in sexual conflicts over paternity, a result only previously demonstrated in Drosophila melanogaster.  相似文献   

16.
Competition between males creates potential for pre‐ and postcopulatory sexual selection and conflict. Theory predicts that males facing risk of sperm competition should evolve traits to secure their reproductive success. If those traits are costly to females, the evolution of such traits may also increase conflict between the sexes. Conversely, under the absence of sperm competition, one expectation is for selection on male competitive traits to relax thereby also relaxing sexual conflict. Experimental evolution studies are a powerful tool to test this expectation. Studies in multiple insect species have yielded mixed and partially conflicting results. In this study, we evaluated male competitive traits and male effects on female costs of mating in Drosophila melanogaster after replicate lines evolved for more than 50 generations either under enforced monogamy or sustained polygamy, thus manipulating the extent of intrasexual competition between males. We found that in a setting where males competed directly with a rival male for access to a female and fertilization of her ova polygamous males had superior reproductive success compared to monogamous males. When comparing reproductive success solely in double mating standard sperm competition assays, however, we found no difference in male sperm defense competitiveness between the different selection regimes. Instead, we found monogamous males to be inferior in precopulatory competition, which indicates that in our system, enforced monogamy relaxed selection on traits important in precopulatory rather than postcopulatory competition. We discuss our findings in the context of findings from previous experimental evolution studies in Drosophila ssp. and other invertebrate species.  相似文献   

17.
In many species, females are thought to benefit from polyandry due to the reduced risks of fertilization by genetically incompatible sperm. However, few studies that have reported such benefits have directly attributed variation in female reproductive success to the interacting effects of males and females at fertilization. In this paper, we determine whether male x female interactions influence fertilization in vitro in the free-spawning, sessile polychaete Galeolaria caespitosa. Furthermore, we determined whether polyandry results in direct fertilization benefits for females by experimentally manipulating the number of males contributing towards staged spawning events. To test for male x female interaction effects we performed an initial experiment that crossed seven males with six females (in all 42 combinations), enabling us to assess fertilization rates for each specific male-female pairing and attribute variation in fertilization success to males, females and their interaction. This initial experiment revealed a strong interaction between males and females at fertilization, confirming that certain male-female combinations were more compatible than others. A second experiment tested the hypothesis that polyandry enhances female reproductive success by exposing each female's eggs to either a single male's sperm (monandry) or the sperm from three males simultaneously (polyandry). We performed this second experiment at two ecologically relevant sperm concentrations. This latter experiment revealed a strong fertilization benefit of polyandry, independent of the effects of sperm concentration (which were also significant). We suggest that these direct fertilization gains arising from polyandry will constitute an important source of selection on females to mate multiply in nature.  相似文献   

18.
Sperm selection may be said to occur if females influence the relative success of ejaculates competing to fertilize their ova. Most evidence that female animals or their ova are capable of sperm selection relates to male genetic incompatibility, although relatively few studies focus on competition between conspecific males. Here I look for evidence of sperm selection with respect to relatedness of mates. Reduced fitness or inbreeding effects in offspring resulting from copulations between close relatives are well documented. If females are capable of sperm selection, they might therefore be expected to discriminate against the sperm of sibling males during sperm competition. I describe an experimental protocol designed to test for evidence of sperm selection while controlling for inbreeding effects. Using decorated field crickets (Gryllodes supplicans), I found that sibling males achieved lower fertilization success in competition with a male unrelated to the female than in competition with another sibling more frequently than expected by chance, although the mean paternity values did not differ significantly between treatments. The tendancy for sibling males to achieve relatively lower fertilization success in competition with males unrelated to the female could not be explained by the effects of increased ejaculate allocation, female control of sperm transfer or inbreeding. This study therefore provides some evidence in support of the idea that female insects (or their ova) may be capable of selection against sperm on the basis of genetic similarity of conspecific males.  相似文献   

19.
Polyandrous mating is extremely common, yet for many species the evolutionary significance is not fully resolved. In order to understand the evolution of mating systems, it is crucial that we investigate the adaptive consequences across many facets of reproduction. We performed experimental evolution with the naturally polygamous flour beetle Tribolium castaneum subjected to either polyandry or enforced monogamy, creating contrasting selection regimes associated with the presence or absence of sexual selection. After 36 generations, we investigated male and female adaptations by mating beetles with an unselected tester strain to exclude potential effects of male–female coevolution. Reproductive success of focal monogamous and polyandrous beetles from each sex was assessed in separate single male and multiple male experiments emulating the different selection backgrounds. Males and females from the polyandrous regime had more offspring in the experiments with multiple males present than monogamous counterparts. However, in single male experiments, neither females nor males differed between selection regimes. Subsequent mating trials with multiple males suggested that adaptations to polyandry in both sexes provide benefits when choice and competition were allowed to take place. Polyandrous females delayed the first copulation when given a choice of males and polyandrous males were quicker to achieve copulation when facing competition. In conclusion, we show that the expected benefits of evolutionary adaptation to polyandry in T. castaneum depended on the availability of multiple mates. This context-dependent effect, which concerned both sexes, highlights the importance of realistic competition and choice experiments.  相似文献   

20.
Sperm show a remarkable degree of variation in size, shape and complexity. Murine rodents exhibit a sperm head morphology that differs greatly from the ovoid shape that is characteristic of most mammals. These rodents have sperm that bear one or more apical hooks, the function of which is currently surrounded by much controversy. It has been suggested that the hook serves to facilitate the formation of sperm groups, which in some species exhibit relatively faster velocities than single cells and thus, may provide an advantage when ejaculates are competing for fertilisations. In support of this hypothesis, a comparative study reported a positive association between the strength of sperm competition (estimated from testes size) and the curvature of the sperm hook amongst 37 murine species. Here, we assessed whether sperm competition influences sperm hookedness at the intra-specific level. Following 16 generations of selection, we used geometric morphometry (GM) to describe sperm head morphology in selection lines of house mice evolving with (polygamous) and without (monogamous) sperm competition. Although the GM analysis returned two relative warps that described variation in the curvature of the sperm hook, we found no evidence of divergence between the selection lines. Thus, we can conclude that sperm competition does not influence the degree of sperm hookedness in house mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号