首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Tomato fruit size results from the combination of cell number and cell size which are respectively determined by cell division and cell expansion processes. As fruit growth is mainly sustained by cell expansion, the development of pericarp and locular tissues is characterized by the concomitant arrest of mitotic activity, inhibition of cyclin-dependent kinase (CDK) activity, and numerous rounds of endoreduplication inducing a spectacular increase in DNA ploidy and mean cell size. To decipher the molecular basis of the endoreduplication-associated cell growth in fruit, we investigated the putative involvement of the WEE1 kinase (Solly;WEE1). We here report a functional analysis of Solly;WEE1 in tomato. Impairing the expression of Solly;WEE1 in transgenic tomato plants resulted in a reduction of plant size and fruit size. In the most altered phenotypes, fruits displayed a reduced number of seeds without embryo development. The reduction of plant-, fruit- and seed size originated from a reduction in cell size which could be correlated with a decrease of the DNA ploidy levels. At the molecular level downregulating Solly;WEE1 in planta resulted in the increase of CDKA activity levels originating from a decrease of the amount of Y15-phosphorylated CDKA, thus indicating a release of the negative regulation on CDK activity exerted by WEE1. Our data indicated that Solly;WEE1 participates in the control of cell size and/or the onset of the endoreduplication process putatively driving cell expansion.  相似文献   

2.
3.
Regulation of tomato fruit growth by epidermal cell wall enzymes   总被引:12,自引:0,他引:12  
Water relations of tomato fruit and the epidermal and pericarp activities of the putative cell wall loosening and tightening enzymes Xyloglucan endotransglycosylase (XET) and peroxidase were investigated, to determine whether tomato fruit growth is principally regulated in the epidermis or pericarp. Analysis of the fruit water relations and observation of the pattern of expansion of tomato fruit slices in vitro , has shown that the pericarp exerts tissue pressure on the epidermis in tomato fruit, suggesting that the rate of growth of tomato fruit is determined by the physical properties of the epidermal cell walls. The epidermal activities of XET and peroxidase were assayed throughout fruit development. Temporal changes in these enzyme activities were found to correspond well with putative cell wall loosening and stiffening during fruit development. XET activity was found to be proportional to the relative expansion rate of the fruit until growth ceased, and a peroxidase activity weakly bound to the epidermal cell wall appeared shortly before cessation of fruit expansion. No equivalent peroxidase activity was detected in pericarp tissue of any age. It is therefore plausible that the expansion of tomato fruit is regulated by the combined action of these enzyme activities in the fruit epidermis.  相似文献   

4.
Tomato fruit cells are characterized by a strong increase in nuclear ploidy during fruit development. Average ploidy levels increased to similar levels (above 50C) in two distinct fruit tissues, pericarp and locular tissue. However, ploidy profiles differed significantly between these two tissues suggesting a tissue-specific control of endoreduplication in tomato fruit. To determine possible relationships between endoreduplication and epigenetic mechanisms, the methylation status of genomic DNA from pericarp and locular tissue of tomato fruit was analysed. Pericarp genomic DNA was characterized by an increase of CG and/or CNG methylation at the 5S and 18S rDNA loci and at gyspsy-like retrotransposon sequences during fruit growth. A sharp decrease of the global DNA methylation level together with a reduction of methylation at the rDNA loci was also observed in pericarp during fruit ripening. Inversely, no major variation of DNA methylation either global or locus-specific, was observed in locular tissue. Thus, tissue-specific variations of DNA methylation are unlikely to be triggered by the induction of endoreduplication in fruit tissues, but may reflect tissue-specific ploidy profiles. Expression analysis of eight putative tomato DNA methyltransferases encoding genes showed that one chromomethylase (CMT) and two rearranged methyltransferases (DRMs) are preferentially expressed in the pericarp during fruit growth and could be involved in the locus-specific increase of methylation observed at this developmental phase in the pericarp.  相似文献   

5.
Postanthesis growth of tomato (Solanum lycopersicon) as of many types of fruit relies on cell division and cell expansion, so that some of the largest cells to be found in plants occur in fleshy fruit. Endoreduplication is known to occur in such materials, which suggests its involvement in cell expansion, although no data have demonstrated this hypothesis as yet. We have analyzed pattern formation, cell size, and ploidy in tomato fruit pericarp. A first set of data was collected in one cherry tomato line throughout fruit development. A second set of data was obtained from 20 tomato lines displaying a large weight range in fruit, which were compared as ovaries at anthesis and as fully grown fruit at breaker stage. A remarkable conservation of pericarp pattern, including cell layer number and cell size, is observed in all of the 20 tomato lines at anthesis, whereas large variations of growth occur afterward. A strong, positive correlation, combining development and genetic diversity, is demonstrated between mean cell size and ploidy, which holds for mean cell diameters from 10 to 350 microm (i.e. a 32,000-times volume variation) and for mean ploidy levels from 3 to 80 C. Fruit weight appears also significantly correlated with cell size and ploidy. These data provide a framework of pericarp patterning and growth. They strongly suggest the quantitative importance of polyploidy-associated cell expansion as a determinant of fruit weight in tomato.  相似文献   

6.
7.

Background

Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague,although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination.

Scope

Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described.

Conclusions

The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits.  相似文献   

8.
9.
Bertin N 《Annals of botany》2005,95(3):439-447
BACKGROUND AND AIMS: To better understand the regulation of fruit growth in response to environmental factors, the effects of temperature and plant fruit load on cell number, cell size and DNA endoreduplication were analysed. METHODS: Plants were grown at 20/20 degrees C, 25/25 degrees C and 25/20 degrees C day/night temperatures, and inflorescences were pruned to two ('2F') or five ('5F') flowers. KEY RESULTS AND CONCLUSIONS: Despite a lower fruit growth rate at 20/20 degrees C, temperature did not affect final fruit size because of the compensation between cell number and size. The higher cell number at 20/20 degrees C (9.0 x 10(6) against 7.9 x 10(6) at 25/25 degrees C and 7.7 x 10(6) at 25/20 degrees C) resulted from an extended period of cell division, and the smaller cell size was due to a shorter period of expansion rather than a lower expansion rate. By contrast, the lower fruit growth rate and size of 5F fruits compared with 2F fruits resulted from the slow down of cell expansion, whereas the number of cells was hardly affected in the proximal fruit. However, within the inflorescence the decreasing gradient of fruit size from proximal to distal fruits was due to a decrease in cell number with similar cell size. Fruit size variations within each treatment were always positively correlated to variations in cell number, but not in cell size. Negative correlations between cell size and cell number suggested that cells of tomato pericarp can be seen as a population of competing sinks. Mean ploidy was slightly delayed and reduced in 5F fruits compared with 2F fruits. It was highest at 25/25 degrees C and lowest at 25/20 degrees C. Treatments did not affect ploidy and cell size in similar ways, but within each treatment, positive correlations existed between mean ploidy and cell size, though significant only in the 2F-25/20 treatment.  相似文献   

10.
11.
Growth of tomato fruits is determined by cell division and cell expansion, which are tightly controlled by factors that drive the core cell cycle. The cyclin-dependent kinases (CDKs) and their interacting partners, the cyclins, play a key role in the progression of the cell cycle. In this study the role of CDKA1, CDKB1, and CDKB2 in fruit development was characterized by fruit-specific overexpression and down-regulation. CDKA1 is expressed in the pericarp throughout development, but is strongly up-regulated in the outer pericarp cell layers at the end of the growth period, when CDKB gene expression has ceased. Overexpression of the CDKB genes at later stages of development and the down-regulation of CDKA1 result in a very similar fruit phenotype, showing a reduction in the number of cell layers in the pericarp and alterations in the desiccation of the fruits. Expression studies revealed that CDKA1 is down-regulated by the expression of CDKB1/2 in CDKB1 and CDKB2 overexpression mutants, suggesting opposite roles for these types of CDK proteins in tomato pericarp development.  相似文献   

12.
13.
During fruit development in tomato (Solanum lycopersicum), cell proliferation and rapid cell expansion occur after pollination. Cell wall synthesis, alteration, and degradation play important roles during early fruit formation, but cell wall composition and the extent of cell wall synthesis/degradation are poorly understood. In this study, we used immunolocalization with a range of specific monoclonal antibodies to examine the changes in cell wall composition during early fruit development in tomato. In exploring early fruit development, the ?1 day post-anthesis (DPA) ovary and fruits at 1, 3, and 5 DPA were sampled. Paraffin sections were prepared for staining and immunolabeling. The 5 DPA fruit showed rapid growth in size and an increase in both methyl-esterified pectin and de-methyl-esterified pectin content in the pericarp, suggesting rapid synthesis and de-methyl esterification of pectin during this growth period. Labeling of pectic arabinan with LM6 antibody and galactan with LM5 antibody revealed abundant amounts of both, with unique distribution patterns in the ovule and premature pericarp. These results suggest the presence of rapid pectin metabolism during the early stages of fruit development and indicate a unique distribution of pectic galactan and arabinan within the ovule, where they may be involved in embryogenesis.  相似文献   

14.
This work investigated the link between genetic and developmental controls of fruit size and composition. On two isogenic lines (CF12-C and CF14-L), differing by fruit weight and sugar content quantitative trait loci (QTLs) identified previously, basal and tip fruits were characterized at anthesis and at maturity through their growth, dry matter and sugar content, number and size of cells and nuclei DNA content. The influence of competition was assessed by removing either basal or tip ovaries at anthesis. On an intact inflorescence, CF12-C fruits grew less than CF14-L fruits, with 1.67 fewer cell layers and similar cell size, suggesting that genes controlling cell division may be responsible for this fruit size variation. Truss thinning masked the QTL effect on fruit size, mainly by reducing the difference in cell number between the two lines and by promoting cell expansion in tip fruits, so that fruit growth was similar at both positions and for both lines. Thus, in these lines, cell number exerts a control on final fruit size only when there is competition among fruits. Different responses of basal and tip fruits after flower removal suggested that this treatment induced changes in hormonal relationships within the truss. No fixed relationship between DNA endoreduplication and cell size was found, as while cell size and dry matter and sugar contents differed with tomato lines, fruit position and truss size, endoreduplication patterns were the same. CF12-C fruits had a higher dry matter (+0.3% of fresh weight) and carbohydrates (+8% of dry matter) content than CF14-L fruits. The percentage dry matter was independent of truss size but decreased slightly from basal to tip fruits.  相似文献   

15.
Tomato fruit growth is characterized by the occurrence of numerous rounds of DNA endoreduplication in connection to cell expansion and final fruit size determination. Endoreduplication occurs as an impairment of mitosis, which can originate from the selective degradation of M-phase-specific cyclins via the ubiquitin-mediated proteolytic pathway, requiring the E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C). In plants CCS52A is the ortholog of CDH1/FZR proteins from yeast, drosophila and human, belonging to the WD40-repeat protein family. During fruit development, the SlCCS52A gene expression is specifically associated to endoreduplication in tomato. Altering SlCCS52A expression in either negative or positive manner impacts the extent of endoreduplication in fruit and affects fruit size. When SlCCS52A is down-expressed endoreduplication is impaired during fruit growth leading to reduced fruit growth. However when SlCCS52A is overexpressed, endoreduplication is initially delayed, accounting for the altered final fruit size, but resumes and is even enhanced leading to fruit growth recovery, pointing at the physiological role of endoreduplication in growth induction during tomato fruit development.Key words: anaphase promoting complex, CCS52A, endoreduplication, fruit development, growth, tomatoEndoreduplication represents the most common mode of cell endopolyploidization in plants and is estimated to occur in over 90% of Angiosperms.1,2 This process is an endonuclear DNA stock duplication leading to the production of chromosomes with 2n chromatids without any change in chromosome number.3,4 As a consequence hypertrophying nuclei arise from successive cycles of DNA replication.In fruits of Cucurbitaceae and Solanaceae, mesocarp cells commonly undergo six rounds of DNA duplication (endocycle), and the highest ploidy levels for these cells being reached in tomato fruits where eight endocycles (up to 512C) can be observed.5 This high level of endopolyploidy in tomato fruits and the numerous data reported on this process in this species,69 makes it an outstanding model for studying endopolyploidization and its physiological role during fruit development.  相似文献   

16.
Many quantitative trait loci (QTLs) for quality traits havebeen located on the tomato genetic map, but introgression offavourable wild alleles into large fruited species is hamperedby co-localizations of QTLs with antagonist effects. The aimof this study was to assess the growth processes controlledby the main QTLs for fruit size and composition. Four nearlyisogenic lines (NILs) derived from an intraspecific cross betweena tasty cherry tomato (Cervil) and a normal-tasting large fruittomato (Levovil) were studied. The lines carried one (L2, L4,and L9) or five (Lx) introgressions from Cervil on chromosomes1, 2, 4, and 9. QTLs for fruit size could be mainly associatedwith cell division processes in L2 and L9, whereas cell expansionwas rather homogeneous among the genotypes, except Cervil forwhich the low expansion rate was attributed to low cell plasticity.The link between endoreduplication and fruit size remained unclear,as cell or fruit sizes were positively correlated with the cellDNA content, but not with the endoreduplication factor. QTLsfor fruit composition reflected differences in water accumulationrather than in sugar accumulation, except in L9 for which theup-regulation of sucrose unloading and hexose transport and/orstarch synthesis was suggested. This may explain the increasedamount of carbon allocated to cell structures in L9, which couldbe related to a QTL for fruit texture. In Lx, these effectswere attenuated, except on fruit size and cell division. Finally,the region on top of chromosome 9 may control size and compositionattributes in tomato, by a combination of QTL effects on celldivision, cell wall synthesis, and carbon import and metabolism. Key words: Cell division and expansion, endoreduplication, fruit quality, near isogenic line, osmotic regulation, quantitative trait locus, Solanum lycopersicum, starch, sugar and acid contents Received 22 July 2008; Revised 17 October 2008 Accepted 20 October 2008  相似文献   

17.
Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.  相似文献   

18.
The fruit size of melon (Cucumis melo L. reticulatus) is determined by the amount of cell proliferation in the pericarp during early fruit development. During this stage, expression and activity of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene is required for fruit growth. In this study, we performed a detailed analysis of the correlation between the expression of melon HMGR (Cm-HMGR) protein and cell division in the pericarp. Flow cytometric analysis revealed that the length of the cell division stage was correlated with the fruit size. Western gel blotting and tissue printing illustrated the temporal and spatial accumulation pattern of Cm-HMGR protein during fruit development. The accumulation of Cm-HMGR transiently increased at the beginning of the cell division stage in the pericarp, where active cell division occurred. The amount of Cm-HMGR was correlated with the length of the cell division period. These results strongly suggest that the expression of Cm-HMGR is involved in the determination of melon fruit size by regulating cell division during early fruit development.  相似文献   

19.
The effects of partial root-zone drying (PRD) on tomato fruit growth and proteome in the pericarp of cultivar Ailsa Craig were investigated. The PRD treatment was 70% of water applied to fully irrigated (FI) plants. PRD reduced the fruit number and slightly increased the fruit diameter, whereas the total fruit fresh weight (FW) and dry weight (DW) per plant did not change. Although the growth rate was higher in FI than in PRD fruits, the longer period of cell expansion resulted in bigger PRD fruits. Proteins were extracted from pericarp tissue at two fruit growth stages (15 and 30 days post-anthesis [dpa]), and submitted to proteomic analysis including two-dimensional gel electrophoresis and mass spectrometry for identification. Proteins related to carbon and amino acid metabolism indicated that slower metabolic flux in PRD fruits may be the cause of a slower growth rate compared to FI fruits. The increase in expression of the proteins related to cell wall, energy, and stress defense could allow PRD fruits to increase the duration of fruit growth compared to FI fruits. Upregulation of some of the antioxidative enzymes during the cell expansion phase of PRD fruits appears to be related to their role in protecting fruits against the mild stress induced by PRD.  相似文献   

20.
Water relations and growth of tomato fruit pericarp tissue   总被引:2,自引:0,他引:2  
The water relations of young tomato fruit pericarp tissue were examined and related to tissue expansion. The relationship between bulk turgor pressure and tissue expansion (as change in fresh mass or length of tissue) was determined in slices of pericarp cut from young, growing fruit by incubation in different osmotic concentrations of polyethylene glycol 6000 or mannitol. The bulk turgor of this tissue was low (about 0.2 MPa), even in fruit from plants that were otherwise fully turgid, whether measured psychrometrically or by length change in osmotic solutions. The rate of tissue growth at maximum turgor was less than that at moderate turgor unless calcium was added to the incubation medium. However, added calcium also decreased the rate of growth at lower turgor pressures. Yield turgor was < 0.1 MPa, but it was increased by the addition of calcium ions. Electrolyte leakage from tissue was greatest at maximum turgor pressure but was decreased by the addition of calcium ions or osmoticum. Tissue growth was unaffected by a range of plant growth regulators (IAA, abscisic acid, benzyladenine and GA3) but was inhibited, particularly at high turgor, by low concentrations of malic or citric acid. The low turgor pressure of pericarp tissue could be due to the presence of apoplastic solutes within the pericarp, and evidence for this is discussed. Thus, fruit tissue may be able to maintain optimal expansion rates only at moderate turgor and low calcium concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号