首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared levels of sequence divergence between fourfold synonymous coding sites and noncoding sites from the intergenic and intronic regions of the Plasmodium falciparum and Plasmodium reichenowi genomes. We observed significant differences in the level of divergence between these classes of silent sites. Fourfold synonymous coding sites exhibited the highest level of sequence divergence, followed by introns, and then intergenic sequences. This pattern of relative divergence rates has been observed in primate genomes but was unexpected in Plasmodium due to a paucity of variation at silent sites in P. falciparum and the corollary hypothesis that silent sites in this genome may be subject to atypical selective constraints. Exclusion of hypermutable CpG dinucleotides reduces the divergence level of synonymous coding sites to that of intergenic sites but does not diminish the significantly higher divergence level of introns relative to intergenic sites. A greater than expected incidence of CpG dinucleotides in intergenic regions less than 500 bp from genes may indicate selective maintenance of regulatory motifs containing CpGs. Divergence rates of different classes of silent sites in these Plasmodium genomes are determined by a combination of mutational and selective pressures.  相似文献   

2.
Murid rodents show much less variation in isochore base composition than do most other mammals, a difference which has been referred to as the murid shift. We have investigated the murid shift by asking (1) whether the murid shift is ongoing and (2) whether there is any evidence of selection or biased gene conversion affecting base composition in the present-day mouse genome. By estimating the ancestral base composition of protein-coding genes in murids we can confirm that the murid shift is ongoing. Tests using nongenic polymorphism data fail to reject the hypothesis that base composition is due to mutation bias alone. However, the patterns of compositional change suggested by the polymorphism and divergence data differ, suggesting the possibility of two murid shifts.  相似文献   

3.
We propose a method by which the intensity of purifying selection on a functional protein-coding gene is estimated by using three aligned homologous sequences: a processed pseudogene (psi), a functional paralog from the same species (g), and a functional ortholog from a different species (o). For each such trio, we calculate the numbers of nucleotide substitutions along the branches leading to psi and g, i.e., K psi and K(g). If we assume that the mutation rates are the same in the genes and the pseudogenes and that mutations occurring in a pseudogene do not affect the fitness of the organism, we can show that the fraction of mutations that are selectively neutral, fg, is equal to the ratio K(g)/K psi. Since advantageous mutations occur only very rarely, such that they do not contribute significantly to the rate of molecular evolution, the fraction of deleterious mutations that are subject to purifying selection is 1-fg. Therefore, the K(g)/K psi ratio can be used directly to estimate the intensity of purifying selection, thereby isolating its effects on the rate of evolution from those of mutation. We compared the selection intensities of 12 orthologous protein-coding pairs from humans and murids. As expected, the fraction of mutations that are subject to purifying selection is strongest in the second codon position and weakest in the third. Interestingly, the mean fractions of effectively neutral mutations in the third codon position were only 41% and 42% for murids and humans, respectively, indicating that many synonymous mutations are subject to selective constraint. In several orthologous genes, we found that the intensity of purifying selection is very different between murid and human orthologous genes. There was no statistically significant difference in overall intensity of purifying selection between humans and murids. Thus, purifying selection does not seem to be an important factor contributing to the observed differences in the rates of evolution between these two taxa.  相似文献   

4.
Fay JC  Benavides JA 《Genetics》2005,170(4):1575-1587
Compared to protein-coding sequences, the evolution of noncoding sequences and the selective constraints placed on these sequences is not well characterized. To compare the evolution of coding and noncoding sequences, we have conducted a survey for DNA polymorphism at five randomly chosen loci among a diverse collection of 81 strains of Saccharomyces cerevisiae. Average rates of both polymorphism and divergence are 40% lower at noncoding sites and 90% lower at nonsynonymous sites in comparison to synonymous sites. Although noncoding and coding sequences show substantial variability in ratios of polymorphism to divergence, two of the loci, MLS1 and PDR10, show a higher rate of polymorphism at noncoding compared to synonymous sites. The high rate of polymorphism is not accompanied by a high rate of divergence and is limited to a few small regions. These hypervariable regions include sites with three segregating bases at a single site and adjacent polymorphic sites. We show that this clustering of polymorphic sites is significantly greater than one would expect on the basis of the spacing between polymorphic fourfold degenerate sites. Although hypervariable noncoding sequences could result from selection on regulatory mutations, they could also result from transient mutational hotspots.  相似文献   

5.
Recent work has suggested that there are many more selectively constrained, functional noncoding than coding sites in mammalian genomes. However, little is known about how selective constraint varies amongst different classes of noncoding DNA. We estimated the magnitude of selective constraint on a large dataset of mouse-rat gene orthologs and their surrounding noncoding DNA. Our analysis indicates that there are more than three times as many selectively constrained, nonrepetitive sites within noncoding DNA as in coding DNA in murids. The majority of these constrained noncoding sites appear to be located within intergenic regions, at distances greater than 5 kilobases from known genes. Our study also shows that in murids, intron length and mean intronic selective constraint are negatively correlated with intron ordinal number. Our results therefore suggest that functional intronic sites tend to accumulate toward the 5' end of murid genes. Our analysis also reveals that mean number of selectively constrained noncoding sites varies substantially with the function of the adjacent gene. We find that, among others, developmental and neuronal genes are associated with the greatest numbers of putatively functional noncoding sites compared with genes involved in electron transport and a variety of metabolic processes. Combining our estimates of the total number of constrained coding and noncoding bases we calculate that over twice as many deleterious mutations have occurred in intergenic regions as in known genic sequence and that the total genomic deleterious point mutation rate is 0.91 per diploid genome, per generation. This estimated rate is over twice as large as a previous estimate in murids.  相似文献   

6.
Popescu CE  Borza T  Bielawski JP  Lee RW 《Genetics》2006,172(3):1567-1576
In many biological systems, especially bacteria and unicellular eukaryotes, rates of synonymous and nonsynonymous nucleotide divergence are negatively correlated with the level of gene expression, a phenomenon that has been attributed to natural selection. Surprisingly, this relationship has not been examined in many important groups, including the unicellular model organism Chlamydomonas reinhardtii. Prior to this study, comparative data on protein-coding sequences from C. reinhardtii and its close noninterfertile relative C. incerta were very limited. We compiled and analyzed protein-coding sequences for 67 nuclear genes from these taxa; the sequences were mostly obtained from the C. reinhardtii EST database and our C. incerta EST data. Compositional and synonymous codon usage biases varied among genes within each species but were highly correlated between the orthologous genes of the two species. Relative rates of synonymous and nonsynonymous substitution across genes varied widely and showed a strong negative correlation with the level of gene expression estimated by the codon adaptation index. Our comparative analysis of substitution rates in introns of lowly and highly expressed genes suggests that natural selection has a larger contribution than mutation to the observed correlation between evolutionary rates and gene expression level in Chlamydomonas.  相似文献   

7.
Since the birth of molecular evolutionary analysis,primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features.Surprisingly,to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates.Here,we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank.The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons.Likewise,an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes.Within 13 protein-coding genes,the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence,while synonymous changes differed only for individual genes,indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites.Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes,and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias.Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene,consistent with near neutrality.Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species.Thus,with the exception of rate heterogeneity among mitochondrial genes,evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.  相似文献   

8.
Zhao L  Zhang XT  Tao XK  Wang WW  Li M 《动物学研究》2012,33(E3-4):E47-E56
Since the birth of molecular evolutionary analysis, primates have been a central focus of study and mitochondrial DNA is well suited to these endeavors because of its unique features. Surprisingly, to date no comprehensive evaluation of the nucleotide substitution patterns has been conducted on the mitochondrial genome of primates. Here, we analyzed the evolutionary patterns and evaluated selection and recombination in the mitochondrial genomes of 44 Primates species downloaded from GenBank. The results revealed that a strong rate heterogeneity occurred among sites and genes in all comparisons. Likewise, an obvious decline in primate nucleotide diversity was noted in the subunit rRNAs and tRNAs as compared to the protein-coding genes. Within 13 protein-coding genes, the pattern of nonsynonymous divergence was similar to that of overall nucleotide divergence, while synonymous changes differed only for individual genes, indicating that the rate heterogeneity may result from the rate of change at nonsynonymous sites. Codon usage analysis revealed that there was intermediate codon usage bias in primate protein-coding genes, and supported the idea that GC mutation pressure might determine codon usage and that positive selection is not the driving force for the codon usage bias. Neutrality tests using site-specific positive selection from a Bayesian framework indicated no sites were under positive selection for any gene, consistent with near neutrality. Recombination tests based on the pairwise homoplasy test statistic supported complete linkage even for much older divergent primate species. Thus, with the exception of rate heterogeneity among mitochondrial genes, evaluating the validity assumed complete linkage and selective neutrality in primates prior to phylogenetic or phylogeographic analysis seems unnecessary.  相似文献   

9.
10.
Statistical analysis of the distribution of 156 kinds of human hemoglobin beta (Hbbeta) chain variants suggests that mutations are essentially random in their location. Thus differential fitness, not differential mutability, is the principal source of nonrandom distribution of interspecies differences in Hbbeta amino acid sequence. Similar analyses of both the location and the kind of interspecies differences detected among primates support this viewpoint and lead us to estimate that at least 95% of all amino acid subsitutions,i.e., nonsynonymous mutations, in Hbbeta are functionally unacceptable in homozygous state. Through the combined use of this estimate and the number of nonsynonymous and synonymous substitutions per nucleotide site inferred from comparisons of entire human and rabbit HbbetamRNA nucleotide sequences, we calculate (a) approximately 70% of synonymous Hbbeta mutations are adaptively undersirable and (b) the mutation rate underlying all changes is lesser than or equal to 10(-8) nucleotide substitutions per nucleotide site per year. Apart from such calculations, analyses of nucleotide patterns in HbbetamRNA as well as in rat preproinsulin mRNA reinforce the notion that a large portion of synonymous mutations are functionally unacceptable and rendered so by selective constraint, at a pretranslational level, of the abundance of particular nucleotide doublets such as CpG.  相似文献   

11.
Mammalian gene evolution: Nucleotide sequence divergence between mouse and rat   总被引:16,自引:0,他引:16  
As a paradigm of mammalian gene evolution, the nature and extent of DNA sequence divergence between homologous protein-coding genes from mouse and rat have been investigated. The data set examined includes 363 genes totalling 411 kilobases, making this by far the largest comparison conducted between a single pair of species. Mouse and rat genes are on average 93.4% identical in nucleotide sequence and 93.9% identical in amino acid sequence. Individual genes vary substantially in the extent of nonsynonymous nucleotide substitution, as expected from protein evolution studies; here the variation is characterized. The extent of synonymous (or silent) substitution also varies considerably among genes, though the coefficient of variation is about four times smaller than for nonsynonymous substitutions. A small number of genes mapped to the X-chromosome have a slower rate of molecular evolution than average, as predicted if molecular evolution is male-driven. Base composition at silent sites varies from 33% to 95% G + C in different genes; mouse and rat homologues differ on average by only 1.7% in silent-site G + C, but it is shown that this is not necessarily due to any selective constraint on their base composition. Synonymous substitution rates and silent site base composition appear to be related (genes at intermediate G + C have on average higher rates), but the relationship is not as strong as in our earlier analyses. Rates of synonymous and nonsynonymous substitution are correlated, apparently because of an excess of substitutions involving adjacent pairs of nucleotides. Several factors suggest that synonymous codon usage in rodent genes is not subject to selection.  相似文献   

12.
Loss of selective constraint on a gene may be expected following changes in the environment or life history that render its function unnecessary. The long-term persistence of protein-coding genes after the loss of known functional necessity can occur by chance or because of selective maintenance of an unknown gene function. The selective maintenance of an alternative gene function is not demonstrated by the failure of statistical tests to reject the hypothesis that there has been no change in the degree of constraint on the evolution of coding genes. Maintenance may be inferred, however, when power analyses of such tests demonstrate that there has been a sufficient number of nucleotide substitutions to detect the loss of selective constraint. Here, we describe a power analysis for tests of loss of constraint on protein-coding genes. The power analysis was applied to loss-of-constraint tests for opsin gene evolution in cave-dwelling crayfish and rbcL evolution in nonphotosynthetic parasitic plants. The power of previously applied tests for loss of constraint on cave crayfish opsin genes was insufficient to distinguish between chance retention and selective maintenance of opsin genes. However, the power of codon-based likelihood ratio tests for change in d(N)/d(S) (=omega) (nonsynonymous to synonymous change) did have sufficient power to detect a loss of constraint on rbcL associated with a loss of photosynthesis in most examples but failed to detect such a change in three independent lineages. We conclude that rbcL has been selectively maintained in these holoparasitic plant lineages. This conclusion suggests that either these taxa are photosynthetic for at least a part of their life or rbcL may have an unknown function in these plants unrelated to photosynthesis.  相似文献   

13.
Rates and patterns of evolution in partial sequences of five mitochondrial genes (cytochrome b, ATPase 6, NADH dehydrogenase subunit 5, tRNA(Glu), and the control region) were compared among taxa in the passerine bird genera Fringilla and Carduelis. Rates of divergence do not vary significantly among genes, even in comparisons with the control region. Rate variation among lineages is significant only for the control region and NADH dehydrogenase subunit 5, and patterns of variation are consistent with the expectations of neutral theory. Base composition is biased in all genes but is stationary among lineages, and there is evidence for directional mutation pressure only in the control region. Despite these similarities, patterns of substitution differ among genes, consistent with alternative regimes of selective constraint. Rates of nonsynonymous substitution are higher in NADH dehydrogenase subunit 5 than in other protein-coding genes, and transitions exist in elevated proportions relative to transversions. Transitions appear to accumulate linearly with time in tRNA(Glu), and despite exhibiting the highest overall rate of divergence among species, there are no transversional changes in this gene. Finally, for resolving phylogenetic relationships among Fringilla taxa, the combined protein-coding data are broadly similar to those of the control region in terms of phylogenetic informativeness and statistical support.   相似文献   

14.
Evolutionary rates for tuf genes in endosymbionts of aphids   总被引:5,自引:1,他引:4  
The gene encoding elongation factor Tu (tuf) in aphid endosymbionts (genus Buchnera) evolves at rates of 1.3 x 10(-10) to 2.5 x 10(-10) nonsynonymous substitutions and 3.9 x 10(-9) to 8.0 x 10(-9) synonymous substitutions per position per year. These rates, which are at present among the most reliable substitution rates for protein-coding genes of bacteria, have been obtained by calibrating the nodes in the phylogenetic tree produced from the Buchnera EF-Tu sequences using divergence times for the corresponding ancestral aphid hosts. We also present data suggesting that the rates of nonsynonymous substitutions are significantly higher in the endosymbiont lineages than in the closely related free-living bacteria Escherichia coli and Salmonella typhimurium. Synonymous substitution rates for Buchnera approximate estimated mutation rates for E. coli and S. typhimurium, as expected if synonymous changes act as neutral mutations in Buchnera. We relate the observed differences in substitution frequencies to the absence of selective codon preferences in Buchnera and to the influence of Muller's ratchet on small asexual populations.   相似文献   

15.
During the past two decades, evidence has accumulated of adaptive evolution within protein-coding genes in a variety of species. However, with the exception of Drosophila and humans, little is known about the extent of adaptive evolution in noncoding DNA. Here, we study regions upstream and downstream of protein-coding genes in the house mouse Mus musculus castaneus, a species that has a much larger effective population size (N(e)) than humans. We analyze polymorphism data for 78 genes from 15 wild-caught M. m. castaneus individuals and divergence to a closely related species, Mus famulus. We find high levels of nucleotide diversity and moderate levels of selective constraint in upstream and downstream regions compared with nonsynonymous sites of protein-coding genes. From the polymorphism data, we estimate the distribution of fitness effects (DFE) of new mutations and infer that most new mutations in upstream and downstream regions behave as effectively neutral and that only a small fraction is strongly negatively selected. We also estimate the fraction of substitutions that have been driven to fixation by positive selection (α) and the ratio of adaptive to neutral divergence (ω(α)). We find that α for upstream and downstream regions (~ 10%) is much lower than α for nonsynonymous sites (~ 50%). However, ω(α) estimates are very similar for nonsynonymous sites (~ 10%) and upstream and downstream regions (~ 5%). We conclude that negative selection operating in upstream and downstream regions of M. m. castaneus is weak and that the low values of α for upstream and downstream regions relative to nonsynonymous sites are most likely due to the presence of a higher proportion of neutrally evolving sites and not due to lower absolute rates of adaptive substitution.  相似文献   

16.
We estimated the intensity of selection on preferred codons in Drosophila pseudoobscura and D. miranda at X-linked and autosomal loci, using a published data set on sequence variability at 67 loci, by means of an improved method that takes account of demographic effects. We found evidence for stronger selection at X-linked loci, consistent with their higher levels of codon usage bias. The estimates of the strength of selection and mutational bias in favor of unpreferred codons were similar to those found in other species, after taking into account the fact that D. pseudoobscura showed evidence for a recent expansion in population size. We examined correlates of synonymous and nonsynonymous diversity in these species and found no evidence for effects of recurrent selective sweeps on nonsynonymous mutations, which is probably because this set of genes have much higher than average levels of selective constraints. There was evidence for correlated effects of levels of selective constraints on protein sequences and on codon usage, as expected under models of selection for translational accuracy. Our analysis of a published data set on D. melanogaster provided evidence for the effects of selective sweeps of nonsynonymous mutations on linked synonymous diversity, but only in the subset of loci that experienced the highest rates of nonsynonymous substitutions (about one-quarter of the total) and not at more slowly evolving loci. Our correlational analysis of this data set suggested that both selective constraints on protein sequences and recurrent selective sweeps affect the overall level of codon usage.  相似文献   

17.
Widespread positive selection in synonymous sites of mammalian genes   总被引:5,自引:0,他引:5  
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.  相似文献   

18.
Hughes AL 《Gene》2007,392(1-2):266-272
In the seven protein-coding genes in the Marburg virus (MARV) genome, the synonymous nucleotide diversity substantially exceeded the nonsynonymous nucleotide diversity, indicating strong purifying selection. Likewise, there was evidence of purifying selection on 5'UTR and 3'UTR, where nucleotide diversity (pi) was significantly less than piS in the coding regions. Nonsynonymous polymorphic sites showed significantly reduced mean gene diversity in comparison to other polymorphic sites, indicating that purifying selection at certain slightly deleterious nonsynonymous polymorphisms is ongoing. Moreover, nonsynonymous polymorphic sites showed significantly reduced gene diversity in comparison to adjacent synonymous sites, even though the vast majority of such adjacent synonymous sites were in the same codon or an adjacent codon. Thus purifying selection, in conjunction with recombination and/or backward mutation, can act to break up linkage relationships at a micro-scale in the MARV genome. The ability of purifying selection to break up linkage between synonymous and nonsynonymous polymorphisms on such a fine scale has not been reported in any other genome.  相似文献   

19.
The relative rates of nucleotide substitution at synonymous and nonsynonymous sites within protein-coding regions have been widely used to infer the action of natural selection from comparative sequence data. It is known, however, that mutational and repair biases can affect rates of evolution at both synonymous and nonsynonymous sites. More importantly, it is also known that synonymous sites are particularly prone to the effects of nucleotide bias. This means that nucleotide biases may affect the calculated ratio of substitution rates at synonymous and nonsynonymous sites. Using a large data set of animal mitochondrial sequences, we demonstrate that this is, in fact, the case. Highly biased nucleotide sequences are characterized by significantly elevated dN/dS ratios, but only when the nucleotide frequencies are not taken into account. When the analysis is repeated taking the nucleotide frequencies at each codon position into account, such elevated ratios disappear. These results suggest that the recently reported differences in dN/dS ratios between vertebrate and invertebrate mitochondrial sequences could be explained by variations in mitochondrial nucleotide frequencies rather than the effects of positive Darwinian selection.  相似文献   

20.
Codon-and amino acid-substitution models are widely used for the evolutionary analysis of protein-coding DNA sequences. Using codon models, the amounts of both nonsynonymous and synonymous DNA substitutions can be estimated. The ratio of these amounts represents the strength of selective pressure. Using amino acid models, the amount of nonsynonymous substitutions is estimated, but that of synonymous substitutions is ignored. Although amino acid models lose any information regarding synonymous substitutions, they explicitly incorporate the information for amino acid replacement, which is empirically derived from databases. It is often presumed that when the protein-coding sequences are highly divergent, synonymous substitutions might be saturated and the evolutionary analysis may be hampered by synonymous noise. However, there exists no quantitative procedure to verify whether synonymous substitutions can be ignored; therefore, amino acid models have been arbitrarily selected. In this study, we investigate the issue of a statistical comparison between codon-and amino acid-substitution models. For this purpose, we propose a new procedure to transform a 20-dimensional amino acid model to a 61-dimensional codon model. This transformation reveals that amino acid models belong to a subset of the codon models and enables us to test whether synonymous substitutions can be ignored by using the likelihood ratio. Our theoretical results and analyses of real data indicate that synonymous substitutions are very informative and substantially improve evolutionary inference, even when the sequences are highly divergent. Therefore, we note that amino acid models should be adopted only after carefully investigating and discarding the possibility that synonymous substitutions can reveal important evolutionary information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号