首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth rate of normal cultured Swiss 3T3 fibroblasts is function of serum concentration and the fraction of G1 cells, and hence the average residence time in G1, increases with the generation time. Serum contains two sets of factors: competence factors, essentially platelet-derived growth factor (PDGF), which induces competence in quiescent fibroblasts and prevents replicating cells from entering G0, and plasma, which allows progression. The increase in the duplication time and the duration of Gl at low serum concentration could hence be due to the fact that competence factors become limiting. The fraction of non-competent cells, operationally defined as those G1 cells unable to leave G1 in the presence of plasma alone, was determined in populations exponentially growing at serum concentrations between 5 and 20%. To do so exponentially growing cultures were shifted to plasma plus colcemid: one part of the cell population progressed through the cycle and accumulated with a G2 DNA content, whereas non-competent cells remained in G1. Analysis of the DNA distributions performed 24 h after the shift showed that as serum concentration was lowered more cells were found in the non-competent state: they were less than 5% in 20% serum and almost 50% in 5% serum. The non-competent cells constitute a dynamic fraction of the population, since in the presence of serum they can leave Gl and progress in the cycle. These data indicate that one of the steps limiting exponential growth is the acquisition of competence and that this event gives rise to heterogeneity within the G1 population.  相似文献   

2.
The growth in vitro of the murine myeloid cell line FDC-P1 depends on the presence of serum and a murine hemopoietic growth factor (either granulocyte/macrophage colony-stimulating factor (GM-CSF) or multipotential colony-stimulating factor (multi-CSF, IL3]. To determine the differential roles of serum and colony-stimulating factor (CSF) during the growth of FDC-P1 cultures, we investigated the kinetics of proliferation and death after withdrawal of serum or CSF, using flow cytometry to quantitate the numbers of vital and dead cells. After withdrawal of CSF, the cells died without entering a quiescent state. The life span of cultures lacking CSF increased with increasing concentrations of serum (greater than 50 h at 30% serum), and the cells kept dividing until they died. During the period of population death caused by the absence of CSF, the re-addition of CSF immediately prevented further cells from dying. After the withdrawal of serum in the presence of CSF, the cells continued to live and proliferate for weeks, but required high cell densities (much greater than 10(5)/ml), which suggests that the cells produced an active substance that can substitute for serum. Serum as well as serum-free conditioned medium from dense cultures made the survival and growth of FDC-P1 cultures independent of cell density. Without sufficient quantities of this activity, all cells of the population died within an interval that was much shorter than one cell cycle, which indicates that the factor acts throughout most of the cell cycle. The results suggest that both the CSF and the serum factor act together to permit cell survival, rather than to drive proliferation.  相似文献   

3.
4.
The contrasting control of lysosomal proteinases, protein turnover and proliferation was studied in 3T3 and SV-3T3 (SV-40-virus-transformed 3T3) cells. 1. In 3T3 cells, net protein accumulation proceeded from 5%/h (doubling time, T(d)=14h) in growing cells to 0%/h as cells became quiescent. SV-3T3 cells never ceased to gain protein, but rather decreased their protein accumulation rate from 6-7%/h (T(d)=10-12h) to 2%/h (T(d)=35-40h) just before culture death in unchanged medium. 2. In both cell types the rates of protein synthesis per unit of protein (a) were proportional to the initial serum concentration from 0 to 6%, and (b) declined under progressive depletion of undefined serum growth factors. In depleted growth medium, leucine incorporation per unit of protein in 3T3 and SV-3T3 cells declined to almost equal synthetic rates while the 3T3 cell existed in a steady state of zero net gain, and the SV-3T3 cell continued to gain protein at a rate of 2%/h. 3. Whereas a large fraction of the control of 3T3-cell net protein accumulation can be accounted for by an increase in degradation from 1%/h to 3%/h, the SV-3T3 cell did not exhibit a growth-related increase in degradation appreciably above 1%/h. 4. Thus, by using first-order kinetics, the continued net protein accumulation of the transformed cell can be accounted for by a failure to increase protein degradation, whereas fractional synthesis can be made to decline to a rate similar to that in the quiescent non-transformed cell. 5. Upon acute serum deprivation, both cell types similarly exhibited small rapid increases in proteolysis independent of cell growth state or lysosomal enzyme status. 6. The 3T3 cell increased its lysosomal proteinase activity in conjunction with increase in the growth-state-dependent proteolytic mechanism; however, the SV-3T3 cell failed to increase lysosomal proteinases or the growth-state-dependent proteolytic mechanism.  相似文献   

5.
When quiescent cells in monolayer culture are stimulated to proliferate with growth factor, the entry into S-phase or mitosis appears to follow first-order kinetics, with a probability to enter the cell cycle that depends on growth factor concentration (Smith and Martin, 1973). Suboptimal growth factor concentrations also lead to a decreased fraction of the cell population that responds to the stimulation (Brooks et al., 1984). Using flow cytometry, we have re-investigated this dual effect of growth factor concentration on cultures of quiescent normal human skin fibroblasts, stimulated with submaximal concentrations of fetal calf serum, epidermal growth factor, and platelet-derived growth factor. The size of the responding population decreased with decreasing concentration of growth factor, but the time course of cell division within this responding population was identical for all growth factor concentrations. This is in conflict with previous concepts and indicates that the entry into the proliferative state is based on a decision mechanism that cannot be adequately described using transition probabilities determined by mitogen concentration.  相似文献   

6.
BHK21 cells cultured in minimal essential medium (Eagle) supplemented with 10% dialyzed fetal calf serum did not grow as they did in whole serum containing medium. Logarithmic growth was, however, initiated after a lag period, the length of which was dependent upon the cell density: medium volume ratio. The quiescent cells conditioned the medium during this lag period, and growth stimulation was apparently due to the release of serine into the medium. Cells cultured in 10% dialyzed serum plus the low molecular weight fraction of serum (serum dialysate), grew with kinetics similar to cells cultured in serum containing medium. When serum dialysate was chromatographed on Bio-gel P-2 the growth promoting activity eluted with the amino acids. Each of the non-essential amino acids was tested for its ability to stimulate the growth of cells in 10% dialyzed serum. Serine was capable of stimulating cell growth to the same extent as 10% serum dialysate and its concentration optimum was similar to its concentration in 10% serum dialysate. The remaining non-essential amino acids were either slightly stimulatory or had no effect on cell growth. Shifting a logarithmically growing population of cells to serine-free medium resulted in the accumulation of 95% of the cells in the G1 phase of the cell cycle within 24 h. Escape from the G1 block could occur if serine was added to the medium or if the cells were allowed to condition the medium. Entry of cells into S phase after the addition of 0.05 μmoles/ml of serine followed a 4–6 h lag and 80% of the cells were synthesizing DNA 12 h after shift-up.  相似文献   

7.
In medium supplemented with defibrinogenated, platelet-poor human plasma and a low molecular weight growth factor derived from human platelets (PDGF), Swiss 3T3 cells proliferate exponentially with the same cell cycle kinetics as cells cultured in medium supplemented with commercial calf serum. Removal of PDGF from the culture medium arrests proliferating cells in a stable, reversible G0/G1 quiescent state. This arrested state is similar to the known quiescent state induced by deprivation of calf serum in cell exit kinetics and cytoplasmic proteins synthesized. Cells are sensitive to PDGF deprivation only at the beginning of G1. Reduction of the plasma concentration in the culture medium also arrests cells in G1. The resulting arrested population is unstable and exhibits progressive cell death. Reduced levels of plasma block cellular transit through the cell cycle at a median time of approx. 2.1 h following mitosis, approx. 3.3 h prior to S phase initiation. In addition to being required by cycling cells, plasma associated factors are required to maintain G1 cells blocked by PDGF deprivation in a stable quiescent state. Establishment of a stable, viable G0/G1 growth-arrested state, therefore, apparently involves two distinct processes: arrest of cellular proliferation in G1 and stabilization of the arrested cells in a viable quiescent state. Together with previously reported findings on serum and isoleucine starvation, these results provide a temporal map of growth control points in the G1 phase.  相似文献   

8.
A platelet-derived growth factor can be shown to be the principal stimulant of DNA synthesis in whole blood serum for those cells that require serum for maintenance and growth in culture. Cell free plasma-derived serum lacks such platelet-derived material. 3T3 cells and primate arterial smooth muscle cells can be maintained in a quiescent state in culture for as long as six weeks in plasma-derived serum. Such cells can grow logarithmically after exposure to 5% whole blood serum or as little as 100 ng/ml of partially purified platelet factor. The cell cycle of smooth muscle cells has been studied in the quiescent (5% plasma-derived serum) and growing state (5% whole blood serum or 5% plasma-derived serum plus platelet factor). The generation time of smooth muscle cells is 16 to 18 hours as shown by autoradiographic frequency of labelled mitoses. The generation time is the same for cells in the growth fraction in either 5% whole blood serum or 5% plasma-derived serum. Thus, platelet factor acts by recruiting cells into the growth fraction rather than effecting a change in the duration of the cell cycle. Flow microfluorimetry studies on cells growing logarithmically in 5% whole blood serum give the following phase durations: G1 = 5.6 hours; S = 7.6 hours; and G2 + M = 3.8 hours. Based on these studies the argument is presented that cells cultured in 5% plasma-derived serum provide a more physiological base for the study of quiescence than do cells in low concentrations of whole blood serum or confluent, density inhibited cells at high (5% or greater) concentrations of whole blood serum. Furthermore, 5% plasma-derived serum represents an appropriate state to examine the perturbation of quiescent cells.  相似文献   

9.
The effect of serum on the growth properties of non-transformed Balb 3T3 A31 and SV40-transformed Balb 3T3 A31 was studied. The concentration of serum in the growth medium of non-transformed cells had little effect on the initial population doubling time, but did regulate the cell density at which the population became quiescent in G1. The doubling time of transformed cells, however, was increased significantly as the concentration of serum was decreased below 4%. This effect on the growth of transformed cells was seen at serum concentrations so low that non-transformed cells did not complete one population doubling. Flow microfluorometric analysis of these populations indicated that the primary effect of different serum concentrations on the non-transformed cells was to modulate the average residence time in G1, whereas, all the cell cycle phases of the transformed cells were affected by serum. At saturation densities, the non-transformed cells became quiescent in G1, but the transformed cells still traversed the cell cycle and their saturation density appeared to be a balance between cell production and cell death occurring primarily in the G1 phase of the cell cycle.  相似文献   

10.
11.
The effect of PGE2 on the activation of quiescent lung fibroblasts   总被引:2,自引:0,他引:2  
The effect of prostaglandin E2 (PGE2) on fibroblast proliferation was examined. The presence of PGE2 for 24 h inhibited the growth of quiescent cells stimulated with serum, platelet-derived growth factor and macrophage-derived factors. Maximal inhibition of nuclear labeling with [3H]thymidine occurred at concentrations greater than 10(-7) M. The inhibitory effect of PGE2 was less potent in exponentially growing cells and was not the result of conversion of PGE2 to PGA2 during incubation in growth medium. The G1 phase was determined to be 12-14 h in untreated cultures. The extent of growth inhibition by PGE2 was similar with addition of PGE2 at 0, 3, 6, or 9 h following restimulation of quiescent cell cultures. Approximately 25% of the cells that enter S phase are refractory to PGE2-induced growth inhibition. Short-term exposure to PGE2 (5 min and 30 min) caused substantial growth inhibition. The serum-induced proliferation was also inhibited by the cAMP analogue, dibutyrl cAMP. Our results suggest that PGE2 affects a distinct subpopulation of cells. Restimulation of quiescent cells treated with PGE2 for 24 h, indicated that release from PGE2 exposure is associated with prolongation of the G1 phase of the cell cycle.  相似文献   

12.
The cell cycle kinetic characteristics of chick endochondral chondrocytes differentiating in vitro were studied by flow cytometry. In addition, the synthesis of type I and type X collagens of the same cells was evaluated by immunoprecipitation. Dedifferentiated cells, derived from chick embryo tibiae and grown attached to a substratum, were characterized by type I collagen synthesis, a high growth fraction (GF = 0.94), minimal cell loss factor (phi = 0.02), and a total cell cycle time of the proliferating cells of about 17 h (tG1 = 8 h, tS = 5 h, and tG2 + M = 4 h). Transfer of dedifferentiated cells to suspension culture on agarose-coated dishes induced differentiation to hypertrophic chondrocytes. These were characterized by type X collagen synthesis, a low growth fraction (GF = 0.52), maximal cell loss factor (phi = 1.0), and a total cell cycle time of the proliferating cells of about 73 h (tG1 = 53 h, tS = 12 h, and tG2 + M = 8 h). The transition from dedifferentiated chondrocytes to hypertrophic chondrocytes was accompanied by large increases of the duration of all the cell cycle phases and of the number of quiescent and degenerating cells. Associated with these alterations in cell cycle kinetics was a switch from type I to type X collagen synthesis. Further preliminary data suggest that the population of differentiating chondrocytes (a state between dedifferentiated and hypertrophic chondrocytes) comprises a heterogeneous population of fast and slow growing cells.  相似文献   

13.
The effects of cell density and growth upon fluid phase endocytosis were investigated in quiescent and growing cultures of monkey arterial smooth muscle cells. Cells were maintained in a quiescent state of growth in 5% plasma-derived serum. Subsequent exposure of subconfluent cultures to the specific mitogens, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), or to whole blood serum, resulted in up to 4-fold increases in the rate of fluid endocytosis/cell. The changes began several hours after entry into G1 phase of the cell cycle and continued through S. The fraction of cells entering the growth cycle was variable (PDGF=FGF>EGF) and a close correlation existed between the rate of endocytosis and the fraction of [3H]thymidine-labelled cells (r = 0.929, p<0.01). At a range of cell densities, the rate of fluid endocytosis/cell was similar in sparse, confluent and post-confluent cultures of quiescent cells; in contrast, in growing cells there was density-dependent inhibition of endocytosis. Furthermore, when quiescent cells were in contact with each other and were then exposed to mitogens, the growth response was diminished and there was only a 25–50% increase in the rate of endocytosis, even in the presence of high concentrations of growth factors.These studies indicate that the influence of cell density upon fluid endocytosis in arterial smooth muscle cells is indirect in that it represents a secondary effect of decreased mitogenic response to specific growth factors.  相似文献   

14.
Numerous reports have shown that polyamines are required for cell proliferation. A current model for regulating commitment to DNA replication in cultured fibroblasts stimulated from quiescence by serum addition postulates sequential action by specific growth factors. To temporally localize polyamine-dependent steps within this defined sequence, mouse Balb/c-3T3 fibroblasts were partially depleted of polyamines by treatment with DL-alpha-difluoromethylornithine (DFMO), next rendered quiescent by serum deprivation, then stimulated by 10% serum with or without exogenous putrescine (Pu). Depletion of polyamines was verified by HPLC, and entry of cells into S phase was monitored by autoradiography. After 24 h of incubation with [3H]-thymidine, polyamine-depleted cells had labeling indices similar to quiescent cells if they were serum-stimulated without Pu, but progressed to S phase to the same degree as control cultures if polyamines were restored by adding Pu at the time of serum stimulation. These observations suggested that commitment of quiescent cells to DNA replication may require polyamines. To determine if polyamine-dependent steps occur during the pre-commitment period (up to 12 h after serum stimulation) or only in traverse of G1 (12 h to 24 h, post-commitment), polyamine-depleted quiescent cells were serum-stimulated for 12 h without Pu, then returned to low serum with Pu. Labeling indices of these cultures remained nearly as low as those of unstimulated cells. Reducing serum concentration from 10% to 0.5% at 12 h after stimulation did not effect labeling indices of control cells not depleted of polyamines by DFMO. These results supported the postulated requirement for polyamines during pre-commitment events. However, polyamine-deficient quiescent cells serum-stimulated without Pu for periods longer than 24 h had labeling indices at 36 and 48 h significantly greater than at 24 h. This suggested that polyamine depletion may decrease the rate at which quiescent cells commit to DNA replication, rather than producing an absolute blockade during the pre-commitment period.  相似文献   

15.
Quiescence in 9L cells and correlation with radiosensitivity and PLD repair   总被引:4,自引:0,他引:4  
The onset of quiescence, changes in X-ray sensitivity, and changes in capacity for potentially lethal damage (PLD) repair of unfed plateau-phase 9L44 cell cultures have been systematically investigated. The quiescent plateau phase in 9L cells was the result of nutrient deprivation and was not a cell contact effect. Eighty-five to 90% of the plateau-phase cells had a G1 DNA content and a growth fraction less than or equal to 0.15. The cell kinetic shifts in the population were temporally correlated with a developing radioresistance, which was characterized by a larger shoulder in the survival curve of the quiescent cells (Dq = 5.71 Gy) versus exponentially growing cells (Dq = 4.48 Gy). When the quiescent plateau-phase cells were refed, an increase in radiosensitivity resulted which approached that of exponentially growing 9L cells. Delayed plating experiments after irradiation of exponentially growing cells, quiescent plateau-phase cells, and synchronized early to mid-G1-phase cells indicated that while significant PLD repair was evident in all three populations, the quiescent 9L cells had a higher PLD repair capacity. Although data for immediate plating indicated that 9L cells may enter quiescence in the relatively radioresistant mid-G1 phase, the enhanced PLD repair capacity of quiescent cells cannot be explained by redistribution into G1 phase. When the unfed quiescent plateau-phase 9L cells were stimulated to reenter the cell cycle by replating into fresh medium, the first G1 was extended by 6 h compared with the G1 of exponentially growing or refed plateau-phase 9L cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. At least 95% of the total protein of A31-3T3 cell cultures undergoes turnover. 2. First-order exponential kinetics were used to provide a crude approximation of averaged protein synthesis, Ks, degradation, Kd, and net accumulation, Ka, as cells ceased growth at near-confluent density in unchanged Dulbecco's medium containing 10% serum. The values of the relationship Ka = Ks - Kd were : 5%/h = 6%/h - 1%/h in growing cells, and 0%/h = 3%/h - 3%/h in steady-state resting cells. 3. As determined by comparison of the progress of protein synthesis and net protein accumulation, the time course of increase in protein degradation coincided with the onset of an increase in lysosomal proteinase activity and decrease in thymidine incorporation after approx. 2 days of exponential growth. 4. After acute serum deprivation, rapid increases in protein degradation of less than 1%/h could be superimposed on the prevailing degradation rate in either growing or resting cells. The results indicate that two proteolytic mechanisms can be distinguished on the basis of the kinetics of their alterations. A slow mechanism changes in relation to proliferative status and lysosomal enzyme elevation. A prompt mechanism, previously described by others, changes before changes in cell-cycle distribution or lysosomal proteinase activity. 5. When the serum concentration of growing cultures was decreased to 1% or 0.25%, then cessation of growth was accompanied by a lower steady-state protein turnover rate of 2.0%/h or 1.5%/h respectively. When growth ceased under conditions of overcrowded cultures, or severe nutrient insufficiency, protein turnover did not attain a final steady state, but declined continually into the death of the culture.  相似文献   

17.
In sub-confluent cultures of Balb/c-3T3 cells, pinocytosis rates were increased after exposure to specific growth factors (serum; platelet-derived growth factor, PDGF; epidermal growth factor, EGF). Conversely, as cells became growth-inhibited with increasing culture density, there was a corresponding decline in pinocytosis rate per cell. In order to test whether density-inhibition of pinocytosis was influenced either by the growth cycle or by cell contact independently of growth, cells were induced into a quiescent state at a range of subconfluent and confluent densities. Under such conditions, cell density did not significantly inhibit pinocytosis rate. When confluent quiescent cultures in 2.5% serum were exposed to 10% serum, the resulting round of DNA synthesis was accompanied by enhanced pinocytosis per cell, even though the cells were incontact with one another. Furthermore, in a SV40-viral transformed 3T3 cell line, both the growth fraction and the pinocytosis rate per cell remained unchanged over a wide range of culture densities. These studies indicate that density-dependent inhibition of pinocytosis in 3T3 cells appears to be secondary to growth-inhibition rather than to any direct physical effects of cell–cell contact.  相似文献   

18.
Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.  相似文献   

19.
It is commonly assumed that ceramide is a second messenger that transduces signaling leading to apoptosis. We tested this hypothesis by investigating the role of ceramide in TNF-alpha-initiated apoptotic signaling using the histiocytic lymphoma cell line U937. We found considerable differences between cell killing by TNF-alpha and by ceramide. U937 cells treated with TNF-alpha are committed early and irreversibly to the apoptotic pathway and start to die 90 min after treatment. U937 cells treated with ceramide start to die 12 h after the initial treatment. The cell death signaling initiated by TNF-alpha is transduced within minutes of exposure to TNF-alpha and it is irreversible. Exogenous ceramide increases the intracellular level of ceramide rapidly, significantly, and well above the physiological levels, within minutes, but cellular commitment to death does not occur until after the first 6 h of incubation. Furthermore, the endogenous ceramide in U937 cells treated with TNF-alpha increases well after the commitment to the apoptotic pathway. The differences between ceramide and TNF-alpha in the kinetics and the commitment to the apoptotic pathway suggest that, (a) ceramide is not a second messenger in the apoptotic signaling of TNF-alpha, (b) ceramide elevations, in TNF-alpha treated cells, are a consequence rather than a cause of apoptosis and (c) exogenously added ceramide and TNF-alpha kill cells via different pathways.  相似文献   

20.
Cells growing in tissue culture as three-dimensional, multicellular aggregates called 'spheroids' typically show a decreasing growth fraction and development of quiescent subpopulations as the spheroids enlarge. Kinetic studies in a number of spheroid systems have indicated that the primary reason for the tumour-like growth is a progressive decrease in growth fraction, with only a modest elongation of cell cycle time in larger spheroids. In this paper, the cellular growth kinetics for spheroids of V79 Chinese hamster lung cells are reviewed, and the regrowth kinetics of cells resuming growth after recovery from quiescent regions of the spheroids are described. Further, the role of regrowth/repopulation in determining the spheroid response to anti-tumour cytotoxics is explored, with particular emphasis on treatment with cisplatin and etoposide. By separating the effects of cytotoxicity and regrowth in the overall spheroid response to anti-neoplastic drugs, it is suggested that 'drug resistance' in tumours can be a kinetic as well as a genetic problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号