首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine whether biofilms of Porphyromonas gingivalis could proteolytically degrade the cytokines interleukin (IL)-1β, IL-6, or IL-1 receptor antagonist (IL-1ra). Biofilms were grown on membrane filters on the surface of Wilkins-Chalgren blood agar. The biofilms were removed from the plates, and solutions containing 2.5 μg/ml of each cytokine were added. Following incubation for up to 4.0 h, supernatants from the biofilms were subjected to SDS-PAGE. The separated proteins were transferred by Western blotting to PVDF membranes and probed with peroxidase-conjugated antibodies recognizing both the intact cytokines and their degradation products. After 2 h, no intact IL-1β, IL-6, or IL-1ra were detectable. Cytokine proteolysis also occurred in the presence of horse serum. These results demonstrate that biofilm-grown P. gingivalis can degrade both pro- and anti-inflammatory cytokines and so may be able to perturb cytokine networks in vivo by eliminating cytokines from the local environment. Received: 12 August 1997 / Accepted: 15 October 1997  相似文献   

2.
Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins) and T. forsythia (Tfo protein) and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.  相似文献   

3.
Periodontal disease caused by the gram-negative oral anaerobic bacterium Porphyromonas gingivalis is thought to be initiated by the binding of P. gingivalis fimbrial protein to saliva-coated oral surfaces. To assess whether biologically active fimbrial antigen can be synthesized in edible plants, a cDNA fragment encoding the C-terminal binding portion of P. gingivalis fimbrial protein, fimA (amino acids 266–337), was cloned behind the mannopine synthase promoter in plant expression vector pPCV701. The plasmid was transferred into potato (Solanum tuberosum) leaf cells by Agrobacterium tumefaciens in vivo transformation methods. The fimA cDNA fragment was detected in transformed potato leaf genomic DNA by PCR amplification methods. Further, a novel immunoreactive protein band of ~6.5 kDa was detected in boiled transformed potato tuber extracts by acrylamide gel electrophoresis and immunoblot analysis methods using primary antibodies to fimbrillin, a monomeric P. gingivalis fimbrial subunit. Antibodies generated against native P. gingivalis fimbriae detected a dimeric form of bacterial-synthesized recombinant FimA(266–337) protein. Further, a protein band of ~160 kDa was recognized by anti-FimA antibodies in undenatured transformed tuber extracts, suggesting that oligomeric assembly of plant-synthesized FimA may occur in transformed plant cells. Based on immunoblot analysis, the maximum amount of FimA protein synthesized in transformed potato tuber tissues was approximately 0.03% of total soluble tuber protein. Biosynthesis of immunologically detectable FimA protein and assembly of fimbrial antigen subunits into oligomers in transformed potato tuber tissues demonstrate the feasibility of producing native FimA protein in edible plant cells for construction of plant-based oral subunit vaccines against periodontal disease caused by P. gingivalis.  相似文献   

4.
Porphyromonas gingivalis, one of the gram-negative organisms associated with periodontal disease, possesses potential virulence factors, including fimbriae, proteases, and major outer membrane proteins (OMPs). In this study, P. gingivalis ATCC 33277 was cultured in a chemostat under hemin excess and presumably peptide-limiting conditions to better understand the mechanisms of expression of the virulence factors upon environmental changes. At higher growth rates, the amounts of FimA and the 75-kDa protein, forming long and short fimbriae, respectively, increased significantly, whereas gingipains decreased in amount and activity. In a nutrient-limited medium, lesser amounts of the above two fimbrial proteins were observed, whereas clear differences were not found in the amounts of gingipains. In addition, two-dimensional electrophoresis revealed that proteins in cells were generally fewer in number during nutrient-limited growth. Under aeration, a considerable reduction in gingipain activity was found, whereas several proteins associated with intact cells significantly increased. However, the expression of major OMPs, such as RagA, RagB, and the OmpA-like proteins, was almost constant under all conditions tested. These results suggest that P. gingivalis may actively control expression of several virulence factors to survive in the widely fluctuating oral environment.  相似文献   

5.
Antimicrobial peptides play important roles in the innate immune system of various organisms, and they may also be considered to prevent the organisms from infections. In particular, β‐defensins, mainly produced in epithelial cells, are recognized as one of the major antimicrobial peptides in mammals, including humans. In this study, we showed that Lactobacillus helveticus SBT2171 (LH2171), one of the several species of lactic acid bacteria, upregulates the production of β‐defensins in oral epithelial cells in vitro. Moreover, LH2171 reduced the increase of proinflammatory cytokine expression, induced by Porphyromonas gingivalis stimulation, in gingival epithelial cells. These data suggested that LH2171 suppresses P. gingivalis‐induced inflammation by upregulating the expression of β‐defensins in gingival epithelial cells. We subsequently investigated the effects of LH2171 in vivo and revealed that β‐defensin expression was increased in the oral cavities of LH2171‐fed mice. Furthermore, LH2171 decreased alveolar bone loss, gingival inflammation, and amounts of P. gingivalis‐specific 16S ribosomal RNA in the gingiva of P. gingivalis‐inoculated mice. Taken together, our results showed that LH2171 upregulates the expression of β‐defensins in oral cavity, thereby decreasing the number of P. gingivalis consequently ameliorating the experimental periodontal disease.  相似文献   

6.
Phosphorylation of serine, threonine and tyrosine is a central mechanism for regulating the structure and function of proteins in both eukaryotes and prokaryotes. However, the action of phosphorylated proteins present in Porphyromonas gingivalis, a major periodontopathogen, is not fully understood. Here, six novel phosphoproteins that possess metabolic activities were identified, namely PGN_0004, PGN_0375, PGN_0500, PGN_0724, PGN_0733 and PGN_0880, having been separated by phosphate‐affinity chromatography. The identified proteins were detectable by immunoblotting specific to phosphorylated Ser (P‐Ser), P‐Thr, and/or P‐Tyr. These results imply that novel phosphorylated proteins might play an important role for regulation of metabolism in P. gingivalis.  相似文献   

7.
Porphyromonas gingivalis is a major pathogen of periodontal diseases, including periodontitis. We have investigated the effect of P. gingivalis infection on the PI3K/Akt (protein kinase B) signaling pathway in gingival epithelial cells. Here, we found that live P. gingivalis, but not heat-killed P. gingivalis, reduced Akt phosphorylation at both Thr-308 and Ser-473, which implies a decrease in Akt activity. Actually, PI3K, which is upstream of Akt, was also inactivated by P. gingivalis. Furthermore, glycogen synthase kinase 3α/β, mammalian target of rapamycin, and Bad, which are downstream proteins in the PI3K/Akt cascade, were also dephosphorylated, a phenomenon consistent with Akt inactivation by P. gingivalis. However, these events did not require direct interaction between bacteria and host cells and were independent of P. gingivalis invasion into the cells. The use of gingipain-specific inhibitors and a gingipain-deficient P. gingivalis mutant KDP136 revealed that the gingipains and their protease activities were essential for the inactivation of PI3K and Akt. The associations between the PI3K regulatory subunit p85α and membrane proteins were disrupted by wild-type P. gingivalis. Moreover, PDK1 translocation to the plasma membrane was reduced by wild-type P. gingivalis, but not KDP136, indicating little production of phosphatidylinositol 3,4,5-triphosphate by PI3K. Therefore, it is likely that PI3K failed to transmit homeostatic extracellular stimuli to intracellular signaling pathways by gingipains. Taken together, our findings indicate that P. gingivalis attenuates the PI3K/Akt signaling pathway via the proteolytic effects of gingipains, resulting in the dysregulation of PI3K/Akt-dependent cellular functions and the destruction of epithelial barriers.  相似文献   

8.
Proteins from bioptates and autoptates of human skeletal muscle m. vastus lateralis were separated by O’Farrell two-dimensional gel electrophoresis (2DE). MALDI-TOF MS and MS/MS enabled identification of 89 protein spots as expression products of 55 genes. A modification of the O’Farrell’s method including non-equilibrium electrophoresis in a pH gradient allowed detection — among major sarcomeric, mitochondrial, and cytosolic proteins — of several proteins, such as PDZ- and LIM domain-containing ones (pI > 8.70), fragments of known proteins, and a stable complex of heavy and light ferritin chains. The data underlie further studies of human skeletal muscle proteins in terms of molecular mechanisms of some physiological and pathological processes.  相似文献   

9.
Relationships among storage proteins in seeds from cultivars and primitive accessions of the four economically most important species ofPhaseolus — P. vulgaris, P. coccineus, P. acutifolius andP. lunatus — were studied. Analysis of SDS-polyacrylamide gel electrophoretic patterns of storage seed proteins revealed common characteristics in the major groups of polypeptides forP. vulgaris, P. coccineus andP. acutifolius, while clear differences existed between thesePhaseolus species and P.lunatus.  相似文献   

10.
Porphyromonas gingivalis, a gram-negative anaerobic oral bacterium, causes periodontal disease by binding to saliva-coated oral surfaces. The FimA protein from P. gingivalis is a crucial pathogenic component of the bacterium and a target for vaccine development against periodontal disease. Complementary DNAs encoding the heavy and light chains of two monoclonal antibodies that bind specifically to the FimA protein were cloned into a plant expression vector under the control of the duplicated Cauliflower Mosaic Virus 35S promoter, and agroinfiltration was used to allow the vectors to infiltrate tobacco plants. The expressions of the heavy and light chains in the leaf tissue were detected using antibodies specific to each antibody chain. Western blot analysis showed the specific binding of the plant-derived monoclonal antibodies to the native FimA protein purified from P. gingivalis. Our finding that plant-derived monoclonal antibodies bound specifically to the native FimA protein indicates that plantderived monoclonal antibodies can protect against P. gingivalis invasion.  相似文献   

11.
Heat-shock proteins of Porphyromonas gingivalis were demonstrated and two of them were purified and further characterized. The amplified de novo synthesis of two different proteins, with apparent molecular weights of 75 kDa and 68 kDa, was observed by autofluorography when a P. gingivalis culture incubated in a 14C-labeled amino acid mixture was shifted from 37°C to 44°C. Both proteins possessed ATP-binding abilities and were purified to almost homogeneity employing affinity chromatography on ATP-agarose followed by preparative SDS-PAGE. Purified 75 kDa and 68 kDa proteins had isoelectric points of 4.4 and 4.6, respectively. They were shown to be immunoreactive with commercial anti-DnaK and anti-GroEL polyclonal antibodies, respectively. Immunoblotting analysis of whole cells using antiserum raised against each purified protein from P. gingivalis, confirmed elevated synthesis of both proteins during thermal shock. A GroEL protein reacted strongly with antiserum against the 68 kDa protein. However, a DnaK protein reacted weakly with antiserum to the 75 kDa protein. Analysis of the N-terminal amino acid sequence of the DnaK-like protein (75 kDa) showed a high degree of homology with those of the HSP70 family including both prokaryotic and eukaryotic cells. The N-terminal amino acid analysis of the GroEL-like protein (68 kDa) indicated that it was identical to those of cloned GroEL homologues from P. gingivalis.  相似文献   

12.
Pili or fimbriae, which are filamentous structures present on the surface of bacteria, were purified from a periodontal pathogen, Porphyromonas gingivalis, in 1980s. The protein component of pili (stalk pilin), which is its major component, was named FimA; it has a molecular weight of approximately 41 kDa. Because the molecular weight of the pilin from P. gingivalis is twice that of pilins from other bacterial pili, the P. gingivalis Fim pili were suggested to be formed via a novel mechanism. In earlier studies, we reported that the FimA pilin is secreted on the cell surface as a lipoprotein precursor, and the subsequent N-terminal processing of the FimA precursor by arginine-specific proteases is necessary for Fim pili formation. The crystal structures of FimA and its related proteins were determined recently, which show that Fim pili are formed by a protease-mediated strand-exchange mechanism. The most recent study conducted by us, wherein we performed cryoelectron microscopy of the pilus structure, provided evidence in support of this mechanism. As the P. gingivalis Fim pili are formed through novel transport and assembly mechanisms, such pili are now designated as Type V pili. Surface lipoproteins, including the anchor pilin FimB of Fim pili that are present on the outer membrane, have been detected in certain Gram-negative bacteria. Here, we describe the assembly mechanisms of pili, including those of Type V and other pili, as well as the lipoprotein transport mechanisms.  相似文献   

13.
Porphyromonas gingivalis is a major etiological agent of periodontal diseases and the outer membrane vesicles (OMVs) contain virulence factors such as LPS and gingipains. In this study, we investigated the potential role of the OMVs in host immune response and tissue destruction during P. gingivalis infection. Firstly, we found that sera from periodontitis patients had significantly stronger reactivity against an OMV-producing wild type strain than the isogenic OMV-depleted strain. OMVs were found to be highly antigenic, as absorption of patient sera with OMVs greatly reduced reactivity with whole cells of P. gingivalis. LC-MS/MS analysis of OMVs revealed multiple forms of gingipains and several gingipain-related proteins. Western blots of OMVs using patient sera revealed a conserved immunoreactive antigen profile resembling the profile of OMV antigens that were recognized by gingipain antiserum, suggesting a potential role of OMV-associated gingipains in triggering antibody-mediated immune responses to P. gingivalis infection. When OMVs were added to a monolayer of an oral squamous epithelial cell line, OMVs caused cell detachment, which was inhibited by preincubating OMVs with anti-gingipain antiserum. These data suggest that gingipain-laden OMVs may contribute to tissue destruction in periodontal diseases by serving as a vehicle for the antigens and active proteases.  相似文献   

14.
Aims: To investigate the effects of the combined application of an N‐acyl homoserine lactone (HSL) analog and antibiotics on biofilms of Porphyromonas gingivalis, a major pathogen of periodontal disease. Methods and Results: Antibiotics used were cefuroxime, ofloxacin and minocycline. A flow‐cell model was used for biofilm formation. Samples were divided into four groups: control, analog‐treated, antibiotic‐treated and combined application groups. Biofilm cell survival was determined using adenosine triphosphate (ATP) bioluminescence and confocal laser microscopy (CLSM). In the combined application group, the ATP count in biofilm cells was significantly decreased compared with the antibiotic‐treated group (Games–Howell test, P < 0·05). A combination of cefuroxime and the analog was most effective against the P. gingivalis biofilm. CLSM observations revealed that the proportion of dead cells was highest in the combined application group. Conclusions: The combined application of the N‐acyl HSL analog and antibiotics was effective at reducing the viability of P. gingivalis cells in biofilms. Significance and Impact of the Study: The combined application of the N‐acyl HSL analog and antibiotics may be successful for eradicating infections involving bacterial biofilms, such as periodontitis.  相似文献   

15.
Summary Background and objective Periodontal pathogen Porphyromonas gingivalis (P. gingivalis) increased cardiomyocyte hypertrophy and apoptosis whereas Actinobaeillus actinomycetemcomitans and Prevotella intermedia had no effects. The purpose of this study is to clarify the role of calcineurin signaling pathway in P.␣gingivalis-induced H9c2 myocardial cell hypertrophy and apoptosis. Methods DNA fragmentation, nuclear condensation, cellular morphology, calcineurin protein, Bcl2-associated death promoter (Bad) and nuclear factor of activated T cell (NFAT)-3 protein products in cultured H9c2 myocardial cell were measured by agarose gel electrophoresis, DAPI, immunofluorescence, and Western blotting following P.␣gingivalis and/or pre-administration of CsA (calcineurin inhibitors cyclosporin A). Results P. gingivalis not only increased calcineurin protein, NFAT-3 protein products and cellular hypertrophy, but also increased DNA fragmentation, nuclear condensation and Bad protein products in H9c2 cells. The increased cellular sizes, DNA fragmentation, nuclear condensation, and Bad of H9c2 cells treated with P. gingivalis were all significantly reduced after pre-administration of CsA. Conclusion Our findings suggest that the activity of calcineurin signal pathway may be initiated by P. gingivalis and further lead to cell hypertrophy and death in culture H9c2 myocardial cells. Supported by the National Science Council, Taiwan  相似文献   

16.
Tobacco smoking is considered one of the most significant environmental risk factors for destructive periodontal disease. The effect of smoking on periodontopathic microbiota has not yet been elucidated, as previous studies failed to identify a concrete relationship between periodontopathic microorganisms and smoking. However, it is likely that smoking, as an environmental stress factor, may affect the behavior of dental plaque microorganisms, ultimately leading to alteration of the host-parasite interaction. The goal of this study was to examine the effect of nicotine, a major component of tobacco, on the growth and protein expression of the crucial periodontal pathogen Porphyromonas gingivalis. The growth of P. gingivalis 381 was measured after bacterial cells were cultivated in liquid broth containing various nicotine concentrations. First, P. gingivalis cells were allowed to grow in the presence of a single dose of nicotine (the single exposure protocol) at 0, 1, 2, 4, and 8 mg/L, respectively. Second, P. gingivalis cells were exposed to five consecutive doses of nicotine (the multiple exposure protocol) at 0, 1, 2, and 4 mg/L, respectively. Bacterial growth was measured by optical density and protein expression was analyzed by SDS-PAGE and 2-D gel electrophoresis. In the single nicotine exposure protocol, it was observed that the growth of P. gingivalis 381 was inhibited by nicotine in a dose-dependent manner. In the multiple nicotine exposure protocol, the growth rate of P. gingivalis increased with each subsequent nicotine exposure, even though bacterial growth was also inhibited in a dose dependent fashion. SDS-PAGE and 2-D gel electrophoresis analyses revealed a minor change in the pattern of protein expression, showing differences in proteins with low molecular weights (around 20 kDa) on exposure to nicotine. The results of this study suggest that nicotine exerts an inhibitory effect on the growth of P. gingivalis, and has a potential to modulate protein expression in P. gingivalis.  相似文献   

17.
Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs.  相似文献   

18.
The indriid genus Propithecus comprises the sifakas, medium-sized lemurs endemic to the forests of Madagascar. Traditionally, scientists divided the genus into only 2 or 3 species —Propithecus diadema, P. verreauxi, and, since 1988, P. tattersalli— with 4 or 5 subspecies in each of the first 2 taxa, but recent authors have suggested that many more distinct species should be recognized. We draw from quantitative and qualitative studies of craniodental traits to evaluate further the phenetic distinctiveness and taxonomic status of each named form of Propithecus. We recognize 9–10 species in the genus. The 4 or 5 species of the Propithecus diadema group —P. diadema, P. candidus, P. perrieri, P. edwardsi, and perhaps P. holomelas, if distinct— share several derived features, including large average body size and a mandible specialized for rotational chewing, and clearly comprise a closely related complex. The 5 species of the Propithecus verreauxi group —P. verreauxi, P. coquereli, P. deckenii, P. coronatus, P. tattersalli— are each highly distinctive morphologically and likely do not comprise a monophyletic group. In particular, we point out the highly distinctive cranial features of Propithecus coronatus, which researchers have traditionally largely overlooked.  相似文献   

19.
20.
Using proteomic technologies—two-dimensional electrophoresis in denaturing conditions in combination with mass spectroscopy of MALDI-TOF proteins—we demonstrated, for the first time, that the most noticeable alteration of protein composition of a Yarrowia lipolytica cell during adaptation to alkaline conditions was an increase of mitochondrial proteins relatively to proteins of cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号