首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
36Cl- was used to study the slow exchange of chloride at a binding site associated with Photosystem II (PS II). When PS II membranes were labeled with different concentrations of 36Cl-, saturation of binding at about I chloride/PS II was observed. The rate of binding showed a clear dependence on the concentration of chloride approaching a limiting value of about 3·10-4 s-1 at high concentrations, similar to the rate of release of chloride from labeled membranes. These rates were close to that found earlier for the release of chloride from PS II membranes isolated from spinach grown on 36Cl-, which suggests that we are observing the same site for chloride binding. The similarity between the limiting rate of binding and the rate of release of chloride suggests that the exchange of chloride with the surrounding medium is controlled by an intramolecular process. The binding of chloride showed a pH-dependence with an apparent pKa of 7.5 and was very sensitive to the presence of the extrinsic polypeptides at the PS II donor side. The binding of chloride was competitively inhibited by a few other anions, notably Br- and NO3 -. The slowly exchanging Cl- did not show any significant correlation with oxygen evolution rate or yield of EPR signals from the S2 state. Our studies indicate that removal of the slowly exchanging chloride lowers the stability of PS II as indicated by the loss of oxygen evolution activity and S2 state EPR signals.Abbreviations Chl chlorophyll - EPR electron paramagnetic resonance - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Mes 4-morpholineethanesulfonic acid - MWCO molecular weight cut off - PPBQ phenyl-p-benzoquinone - PS II Photosystem II  相似文献   

2.
High-temperature-induced inhibition of the acceptor side of Photosystem II (PS II) was studied in tobacco thylakoids using oxygen evolution, chlorophyll a (Chl a) fluorescence and redox potential measurements. When thylakoids were heated at 2 °C/min from 25 to 50 °C, the oxygen evolving complex became inhibited between 32 and 45 °C, whereas the acceptor side of PS II tolerated higher temperatures. Variable Chl a fluorescence decreased more slowly than oxygen evolution, suggesting that transitions between some S-states occurred even after heat-induced inhibition of the oxygen evolving activity. 77 K emission spectroscopy reveals that heating does not cause detachment of the light-harvesting complex II from PS II, and thus the heat-induced increase in the initial F0 fluorescence is due to loss of exciton trapping in the heated PS II centers. Redox titrations showed a heat-induced increase in the midpoint potential of the QA/QA -) couple from the control value of –80 mV to +40 mV at 50 °C, indicating a loss of the reducing power of QA -). When its driving force thus decreased, electron transfer from QA -) to QB in the PS II centers that still could reduce QA became gradually inhibited, as shown by measurements of the decay of Chl a fluorescence yield after a single turnover flash. Interestingly, the heat-induced loss of variable fluorescence and inhibition of electron transfer from QA -) to QB could be partially prevented by the presence of 5 mM bicarbonate during heating, suggesting that high temperatures cause release of the bicarbonate bound to PS II. We speculate that both the upshift in the redox potential of the QA/QA -) couple and the release of bicarbonate may be caused by a heat-induced structural change in the transmembrane D1 or D2 proteins. This structural change may, in turn, be caused by the inhibition of the oxygen evolving complex during heating.  相似文献   

3.
Inhibition of Photosystem II (PS II) activity induced by continuous light or by saturating single turnover flashes was investigated in Ca2+-depleted, Mn-depleted and active PS II enriched membrane fragments. While Ca2+- and Mn-depleted PS II were more damaged under continuous illumination, active PS II was more susceptible to flash-induced photoinhibition. The extent of photoinactivation as a function of the duration of the dark interval between the saturating single turnover flashes was investigated. The active centres showed the most photodamage when the time interval between the flashes was long enough (32 s) to allow for charge recombination between the S2 or S3 and QB to occur. Illumination with groups of consecutive flashes (spacing between the flashes 0.1 s followed by 32 s dark interval) resulted in a binary oscillation of the loss of PS II-activity in active samples as has been shown previously (Keren N, Gong H, Ohad I (1995), J Biol Chem 270: 806–814). Ca2+- and Mn-depleted PS II did not show this effect. The data are explained by assuming that charge recombination in active PS II results in a back reaction that generates P680 triplet and thence singlet oxygen, while in Ca2+- and Mn-depleted PS II charge recombination occurs through a different pathway, that does not involve triplet generation. This correlates with an up-shift of the midpoint potential of QA in samples lacking Ca2+ or Mn that, in term, is predicted to result in the triplet generating pathway becoming thermodynamically less favourable (G.N. Johnson, A.W. Rutherford, A. Krieger, 1995, Biochim. Biophys. Acta 1229, 201–207). The diminished susceptibility to flash-induced photoinhibition in Ca2+- and Mn-depleted PS II is attributed at least in part to this mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Inorganic cofactors (Mn, Ca2+ and Cl-) are essential for oxidation of H2O to O2 by Photosystem II. The Mn reductants NH2OH and its N-methyl derivatives have been employed as probes to further examine the interactions between these species and Mn at the active site of H2O oxidation. Results of these studies show that the size of a hydroxylamine derivative regulates its ability to inactivate O2 evolution activity, and that this size-dependent inhibition behavior arises from the protein structure of Photosystem II. A set of anions (Cl-, F- and SO4 2-) is able to slow NH2OH and CH3NHOH inactivation of intact Photosystem II membranes by exerting a stabilizing influence on the extrinsic 23 and 17 kDa polypeptides. In contrast to this non-specific anion effect, only Cl- is capable of attenuating CH3NHOH and (CH3)2NOH inhibition in salt-washed preparations lacking the 23 and 17 kDa polypeptides. However, Cl- fails to protect against NH2OH inhibition in salt-washed membranes. These results indicate that the attack by NH2OH and its N-methyl derivatives on Mn occurs at different sites in the O2-evolving complex. The small reductant NH2OH acts at a Cl--insensitive site whereas the inhibitions by CH3NHOH and (CH3)2NOH involve a site that is Cl- sensitive. These findings are consistent with earlier studies showing that the size of primary amines controls the Cl- sensitivity of their binding to Mn in the O2-evolving complex.Abbreviation MES 4-morpholinoethanesulfonic acid - PS II Photosystem II  相似文献   

5.
Thermoluminescence (TL) signals were recorded from grana stacks, margins, and stroma lamellae from fractionated, dark-adapted thylakoid membranes of spinach (Spinacia oleracea L.) in the absence and in the presence of 2,6-dichlorphenylindophenol (DCMU). In the absence of DCMU, the TL signal from grana fractions consisted of a homogenous B-band, which originates from recombination of the semi-quinone QB with the S2 state of the water-splitting complex and reflects active photosystem II (PSII). In the presence of DCMU, the B-band was replaced by the Q-band, which originates from an S2QA recombination. Margin fractions mainly showed two TL-bands, the B- and C-bands, at approximately 50°C in the absence of DCMU, and Q- and C-bands in the presence of DCMU. The C-band is ascribed to a TyrD+-QA recombination. In the absence of DCMU, the fractions of stromal lamellae mainly gave rise to a TL emission at 42°C. The intensity of this band was independent of the number of excitation flashes and was shifted to higher temperatures (52°C) after the addition of DCMU. Based on these observations, this band was considered to be a C-band. After photoinhibitory light treatment of uncoupled thylakoid membranes, the TL intensities of the B- and Q-bands decreased, whereas the intensity at 45°C (C-band) slightly increased. It is proposed that the 42 to 52°C band that was observed in marginal and stromal lamellae and in photoinhibited thylakoid membranes reflects inactive PSII centers that are assumed to be equivalent to inactive PSII QB-nonreducing centers.  相似文献   

6.
The effect of desiccation and rehydration on the function of Photosystem II has been studied in the desiccation tolerant lichen Cladonia convoluta by thermoluminescence. We have shown that in functional fully hydrated thalli thermoluminescence signals can be observed from the recombination of the S2(3)QB (B band), S2QA (Q band), Tyr-D+QA (C band) and Tyr-Z+(His+)QA (A band) charge stabilization states. These thermoluminescence signals are completely absent in desiccated thalli, but rapidly reappear on rehydration. Flash-induced oscillation in the amplitude of the thermoluminescence band from the S2(3)QB recombination shows the usual pattern with maxima after 2 and 6 flashes when rehydration takes place in light. However, after rehydration in complete darkness, there is no thermoluminescence emission after the 1 st flash, and the maxima of the subsequent oscillation are shifted to the 3rd and 7th flashes. It is concluded that desiccation of Cladonia convoluta converts PS II into a nonfunctional state. This state is characterized by the lack of stable charge separation and recombination, as well as by a one-electron reduction of the water-oxidizing complex. Restoration of PS II function during rehydration can proceed both in the light and in darkness. After rehydration in the dark, the first charge separation act is utilized in restoring the usual oxidation state of the water-oxidizing comples.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DT desiccation tolerant - PS II Photosystem II - TL thermoluminescence - P680 reaction center Chl of PS II - QA and QB puinone electron acceptors of PS II - S0,...,S4 the redox states of the water-oxidizing complex - Tyr-Z and Tyr-D redox-active tyrosine electron donors of PS II  相似文献   

7.
The anion azide, N3 -, has been previously found to be an inhibitor of oxygen evolution by Photosystem II (PS II) of higher plants. With respect to chloride activation, azide acts primarily as a competitive inhibitor but uncompetitive inhibition also occurs [Haddy A, Hatchell JA, Kimel RA and Thomas R (1999) Biochemistry 38: 6104–6110]. In this study, the effects of azide on PS II-enriched thylakoid membranes were characterized by electron paramagnetic resonance (EPR) spectroscopy. Azide showed two distinguishable effects on the S2 state EPR signals. In the presence of chloride, which prevented competitive binding, azide suppressed the formation of the multiline and g = 4.1 signals concurrently, indicating that the normal S2 state was not reached. Signal suppression showed an azide concentration dependence that correlated with the fraction of PS II centers calculated to bind azide at the uncompetitive site, based on the previously determined inhibition constant. No evidence was found for an effect of azide on the Fe(II)QA - signals at the concentrations used. This result is consistent with placement of the uncompetitive site on the donor side of PS II as suggested in the previous study. In chloride-depleted PS II-enriched membranes azide and fluoride showed similar effects on the S2 state EPR signals, including a notable increase and narrowing of the g = 4.1 signal. Comparable effects of other anions have been described previously and apparently take place through the chloride-competitive site. The two azide binding sites described here correlate with the results of other studies of Lewis base inhibitors.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Inhibition of Photosystem II (PS II) activity by single turnover visible light flashes was studied in thylakoid membranes isolated form spinach. Flash illumination results in decreased oxygen evolving activity of PS II, which effect is most pronounced when the water-oxidizing complex is in the S2 and S3 states, and increases with increasing time delay between the subsequent flashes. By applying the fluorescent spin-trap DanePy, we detected the production of singlet oxygen, whose amount was increasing with increasing flash spacing. These findings were explained in the framework of a model, which assumes that recombination of the S2QB and S3QB states generate the triplet state of the reaction center chlorophyll and lead to the production of singlet oxygen.  相似文献   

9.
Many of the core proteins in Photosystem II (PS II) undergo reversible phosphorylation. It is known that protein phosphorylation controls the repair cycle of Photosystem II. However, it is not known how protein phosphorylation affects the partial electron transport reactions in PS II. Here we have applied variable fluorescence measurements and EPR spectroscopy to probe the status of the quinone acceptors, the Mn cluster and other electron transfer components in PS II with controlled levels of protein phosphorylation. Protein phosphorylation was induced in vivo by varying illumination regimes. The phosphorylation level of the D1 protein varied from 10 to 58% in PS II membranes isolated from pre-illuminated spinach leaves. The oxygen evolution and QA to QB(QB ) electron transfer measured by flash-induced fluorescence decay remained similar in all samples studied. Similar measurements in the presence of DCMU, which reports on the status of the donor side in PS II, also indicated that the integrity of the oxygen-evolving complex was preserved in PS II with different levels of D1 protein phosphorylation. With EPR spectroscopy we examined individual redox cofactors in PS II. Both the maximal amplitude of the charge separation reaction (measured as photo-accumulated pheophytin) and the EPR signal from the QA Fe2+ complex were unaffected by the phosphorylation of the D1 protein, indicating that the acceptor side of PS II was not modified. Also the shape of the S2 state multiline signal was similar, suggesting that the structure of the Mn-cluster in Photosystem II did not change. However, the amplitude of the S2 multiline signal was reduced by 35% in PS II, where 58% of the D1 protein was phosphorylated, as compared to the S2 multiline in PS II, where only 10% of the D1 protein was phosphorylated. In addition, the fraction of low potential Cyt b 559 was twice as high in phosphorylated PS II. Implications from these findings, were precise quantification of D1 protein phosphorylation is, for the first time, combined with high-resolution biophysical measurements, are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The oxygen evolving complex of photosystem II (PS II) contains three extrinsic polypeptides of approximate molecular weights 16, 23 and 33 kDa. These polypeptides are associated with the roles of Cl-, Ca2+ and Mn2+ in oxygen evolution. We have shown that selective removal of 16 and 23 kDa polypeptides from the above complex by NaCl washing of PS II enriched membrane fragments renders the PS II core complex more susceptible to the herbicide atrazine. On the other hand, when both native and depleted preparations were resupplied with exogenous Ca2+ and Cl-, we obtained a reduction of atrazine inhibition which was much stronger in the depleted preparations than in the native ones. It is concluded that removal of 16 and 23 kDa polypeptides in general, and disorganization of associated Ca2+ and Cl- in particular, enhances atrazine penetration to its sites of action in the vicinity of the PS II complex. The above could be interpreted if we assume a reduced plastoquinone affinity at the QB (secondary plastoquinone electron acceptor) pocket of D1 polypeptide following transmembranous modifications caused by the depletion of these polypeptides.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - MES 2-(N-morpholino)ethanesulfonic acid - PMSF phenylmethylsul-phonyfluoride - PS II photosystem II - PAGE polyacrilamide gel electrophoresis  相似文献   

11.
Under conditions that assured rebinding of the extrinsic 17 and 23 kDa polypeptides, Cl--depleted Photosystem II membranes isolated from spinach chloroplasts were subjected to reconstituting treatments in media containing NaF, NaCl, NaBr, NaI or NaNO3, or they were kept in a medium without any added salt other than the buffer. After removing most of the unbound reconstituting anions by washing, the O2-evolution activities and thermoluminescence properties of the membranes were compared. While the temperature of maximal thermoluminescence emission was lowest for membranes treated with Cl-, no uniform correlation was evident between the temperature profile of the thermoluminescence emission and the apparent activating effectiveness of the anions in the membranes' water oxidizing machinery. However, the differences between the thermoluminescence features did conform to a trend according to which the emission temperatures were upshifted as the size of the activating anion increased, and its hydration energy decreased, i.e. Cl-<Br-<NO3 -<I-. The inactive F- anions were not well retained by the membranes. To explain the experimental data it is suggested that the structural environment of the charge accumulating Mn-center is influenced by the ionic conditions encountered by the Photosystem II membranes after Cl- removal, further enforced by the binding of compatible anions, and then stabilized by the 17 and 23 kDa extrinsic polypeptides. If, as some concepts imply, the anion binding sites are located at or near the functional Mn, only very exceptional characteristics of the water-oxidizing mechanism may account for the observation that the potentially electron-donating I- anion can serve as activator and that it stabilizes rather than destabilizes the S2-state.Abbreviations Chl chlorophyll - Hepes 4-(2-hydroxyethyl)-1-piperazine-ethane sulfonic acid - Mes 2-(N-morpholino)ethane sulfonic acid - Pheo the pheophytin a of the Photosystem II reaction center - PS photosystem  相似文献   

12.
An effect of desiccation (a decrease of relative water content from 97% to 10% within 35 h) on Photosystem II was studied in barley leaf segments (Hordeum vulgare L. cv. Akcent) using chlorophyll a fluorescence and thermoluminescence (TL). The O-J-I-P fluorescence induction curve revealed a decrease of FP and a slight shift of the J step to a shorter time with no change in its height. The analysis of the fluorescence decline after a saturating light flash revealed an increased portion of slow exponential components with increasing desiccation. The TL bands obtained after excitation by continuous light were situated at about –27°C (Zv band – recombination of P680+QA ), –14 °C (A band – S3QA ), +12 °C (B band – S2/3QB ) and +45 °C (C band – TyrD+QA ). The bands related to the S-states of oxygen evolving complex (A and B) were reduced by desiccation and shifted to higher and lower temperatures, respectively. In accordance with this, the band observed at about +27 °C (S2QB ) after excitation by 1 flash fired at –10 °C and band at about +20 °C (S2/3QB ) after 2 flashes decreased with increasing water deficit and shifted to lower temperatures. A new band around 5 °C appeared in both regimes of TL excitation for a relative water content of under 42% and was attributed to the Q band (S2QA ). It is suggested that under desiccation, an inhibition of the formation of S2- and S3-states in OEC occurred simultaneously with a lowering of electron transport on the acceptor side of PS II. The temperature down-shift of the TL bands obtained after the flash excitation was induced at the initial phases of water stress, indicating a decrease of the activation energy for the S2/3QB recombination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
《BBA》1987,890(1):89-96
Electron donation to Photosystem II (PS II) by diphenylcarbazide (DPC) is interrupted by the presence of endogenous Mn in PS II particles. Removal of this Mn by Tris treatment greatly stimulates the electron transport with DPC as donor. Binding of low concentration of exogenous Mn(II) to Tris-treated PS II particles inhibits DPC photooxidation competitively with DPC. This phenomenon was used to locate a highly specific Mn(II) binding site on the oxidizing side of Photosystem II with dissociation constant about 0.15 μM. The binding of Mn(II) is electrostatic in nature. Its affinity depends not only on the ionic strength, but also on the anion species of the salt in the medium. The effectiveness in decreasing the affinity follows the order F > SO2−4 > CH3COO > CI > Br > NO3. This observation is interpreted as follows: smaller ions, like F, CH3COO, and larger ions, like SO2−4, have inhibitory effects on Mn(II) binding, whereas ions with optimal size, like Cl, Br and NO3, can stabilize the binding, resembling the anion requirement for reactivation of Cl-depleted chloroplasts. We suggest that the binding site for Mn(II) we observed is the site for the endogenous Mn in the O2-evolving complex of PS II. This site remains after Tris treatment, which removes all the endogenous Mn as well as the three extrinsic proteins, indicating that it is on the intrinsic component(s) of PS II reaction centers. Furthermore, the Cl requirement for O2 evolution may be attributed, at least partly to its stabilizing effect on Mn binding.  相似文献   

14.
Certain phenolic compounds represent a distinct class of Photosystem (PS) II QB site inhibitors. In this paper, we report a detailed study of the effects of 2,4,6-trinitrophenol (TNP) and other phenolic inhibitors, bromoxynil and dinoseb, on PS II energetics. In intact PS II, phenolic inhibitors bound to only 90-95% of QB sites even at saturating concentrations. The remaining PS II reaction centers (5-10%) showed modified QA to QB electron transfer but were sensitive to urea/triazine inhibitors. The binding of phenolic inhibitors was 30- to 300-fold slower than the urea/triazine class of QB site inhibitors, DCMU and atrazine. In the sensitive centers, the S2QA state was 10-fold less stable in the presence of phenolic inhibitors than the urea/triazine herbicides. In addition, the binding affinity of phenolic herbicides was decreased 10-fold in the S2QA state than the S1QA state. However, removal of the oxygen-evolving complex (OEC) and associated extrinsic polypeptides by hydroxylamine (HA) washing abolished the slow binding kinetics as well as the destabilizing effects on the charge-separated state. The S2-multiline electron paramagnetic resonance (EPR) signal and the ‘split’ EPR signal, originating from the S2YZ state showed no significant changes upon binding of phenolic inhibitors at the QB site. We thus propose a working model where QA redox potential is lowered by short-range conformational changes induced by phenolic inhibitor binding at the QB niche. Long-range effects of HA-washing eliminate this interaction, possibly by allowing more flexibility in the QB site.  相似文献   

15.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

16.
Loss by recombination of the charge separated state P680+QA limits the performance of Photosystem II (PS II) as a photochemical energy converter. Time constants reported in literature for this process are mostly either near 0.17 ms or near 1.4 ms. The shorter time is found in plant PS II when reduction of P680+ by the secondary electron donor Tyrosine Z cannot occur because YZ is already oxidized. The 1.4 ms recombination is seen in YZ-less mutants of the cyanobacterium Synechocystis. However, the rate of P680+QA recombination that actually competes with the stabilization of the charge separation has not been previously reported. We have measured the kinetics of the flash-induced fluorescence yield changes in the microsecond time domain in Tris-washed spinach chloroplasts. In this way the kinetics and yield of P680+ reduction by YZ were obtained, and the rate of the competing P680+QA recombination could be evaluated. The recombination time was less than 0.5 ms; the best-fitting time constant was 0.1 ms. The presence of YZox slightly decreased the efficiency of excitation trapping but did not seem to accelerate P680+QA recombination. The two P680+QA lifetimes in the literature probably reflect a significant difference between plant and cyanobacterial PS II.  相似文献   

17.
18.
Photosystem II membranes were isolated from chloroplasts of pokeweed (Phytolacca americana) and rendered deficient in Ca2+, an inorganic cofactor of photosynthetic water oxidation. The thermoluminescence properties of such membranes were found to depend on the Ca2+-depleting method used. This feature was analyzed with respect to the thermoluminescence emission that accompanied the recombination reaction between the reduced acceptor QA and the oxidant of the S2 state. It was determined that the differences observed among various preparations of Ca2+-depleted membranes were attributable to the presence or absence of the extrinsic 23 kDa polypeptide on the membranes. The binding of this polypeptide to Ca2+-depleted membranes devoid of the 17 and 23 kDa extrinsic polypeptides caused the thermoluminescence to be emitted at a higher temperature due to a further stabilization of an already abnormally stable S2 state. Addition of the chelators EDTA or EGTA and of citrate brought about a similar response. The conditions required for the upshift of the emission temperature of thermoluminescence strongly resembled those identified by Boussac et al. (FEBS Lett. 277 (1990) 69–74) as responsible for modifying the EPR multiline signal from the S2 state of Ca2+-depleted PS II membranes. Consistent with the authors' interpretation of the reason for this modification, we conclude that the elevated emission temperature of the thermoluminescence emission reflects an abnormal ligand environment of the Mn-center in PS II that may be created by a direct ligation of the added agents to Mn. Evidence is also presented that the return to a normal S2 after an addition of Ca2+ occurs via yet another condition of S2 which, in terms of its thermoluminescence properties, resembles that of Ca2+-depleted membranes before addition of modifying agents, but is not identical to it.  相似文献   

19.
In dark-adapted spinach leaves approximately one third of the Photosystem II (PS II) reaction centers are impaired in their ability to transfer electrons to Photosystem I. Although these inactive PS II centers are capable of reducing the primary quinone acceptor, QA, oxidation of QA occurs approximately 1000 times more slowly than at active centers. Previous studies based on dark-adapted leaves show that minimal energy transfer occurs from inactive centers to active centers, indicating that the quantum yield of photosynthesis could be significantly impaired by the presence of inactive centers. The objective of the work described here was to determine the performance of inactive PS II centers in light-adapted leaves. Measurements of PS II activity within leaves did not indicate any increase in the concentration of active PS II centers during light treatments between 10 s and 5 min, showing that inactive centers are not converted to active centers during light treatment. Light-induced modification of inactive PS II centers did occur, however, such that 75% of these centers were unable to sustain stable charge separation. In addition, the maximum yield of chlorophyll fluorescence associated with inactive PS II centers decreased substantially, despite the lack of any overall quenching of the maximum fluorescence yield. The effect of light treatment on inactive centers was reversed in the dark within 10–20 mins. These results indicate that illumination changes inactive PS II centers into a form that quenches fluorescence, but does not allow stable charge separation across the photosynthetic membrane. One possibility is that inactive centers are converted into centers that quench fluorescence by formation of a radical, such as reduced pheophytin or oxidized P680. Alternatively, it is possible that inactive PS II centers are modified such that absorbed excitation energy is dissipated thermally, through electron cycling at the reaction center.Abbreviations A518 absorbance change at 518 nm, reflecting the formation of an electric field across the thylakoid membrane - AFL1 amplitude of the fast (<100 ms) phase of A518 induced by the first of two saturating, single-turnover flashes spaced 30 ms apart - AFL2 amplitude of the fast (<100 ms) phase of A518 induced by the second of two saturating, single-turnover flashes spaced 50 ms apart - DCBQ 2,6-dichloro-p-benzoquinone - Fo yield of chlorophyll fluorescence when QA is fully oxidized - Fm yield of chlorophyll fluorescence when QA is fully reduced - Fx yield of chlorophyll fluorescence when QA is fully reduced at inactive PS II centers, but fully oxidized at active PS II centers - Pheo pheophytin - P680 the primary donor of Photosystem II - PPFD photosynthetic photon flux density - QA Primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II  相似文献   

20.
《BBA》2022,1863(2):148519
PsbX is a 4.1 kDa intrinsic Photosystem II (PS II) protein, found together with the low-molecular-weight proteins, PsbY and PsbJ, in proximity to cytochrome b559. The function of PsbX is not yet fully characterized but PsbX may play a role in the exchange of the secondary plastoquinone electron acceptor QB with the quinone pool in the thylakoid membrane. To study the role of PsbX, we have constructed a PsbX-lacking strain of Synechocystis sp. PCC 6803. Our studies indicate that the absence of PsbX causes sensitivity to high light and impairs electron transport within PS II. In addition to a change in the QB-binding pocket, PsbX-lacking cells exhibited sensitivity to sodium formate, suggesting altered binding of the bicarbonate ligand to the non-heme iron between the sequential plastoquinone electron acceptors QA and QB. Experiments using 35S-methionine revealed high-light-treated PsbX-lacking cells restore PS II activity during recovery under low light by an increase in the turnover of PS II-associated core proteins. These labeling experiments indicate the recovery after exposure to high light requires both selective removal and replacement of the D1 protein and de novo PS II assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号