首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous culture experiments with the L-producer, Corynebacterium glutamicum, were carried out to characterize the effect of specific growth rate on fermentation yields, specific rates, productivities, and fluxes through the primary metabolism. The specific productivity of L-lysine exhibited a maximum with respect to specific growth rate, with an initial growth-associated behavior up to specific growth rates of about 0.1 h(-1), and a constant specific productivity for specific growth rates in the range of about 0.1 to 0.2 h(-1). The productivity dropped at specific growth rates larger than about 0.2 h(-1). The yield of L-lysine on glucose increased approximately linearly with decreasing specific growth rate over the entire range studied, as did the respiratory quotient. A direct relationship was established between the culture respiratory quotient and the L-lysine yield. By explicitly accounting for glucose used for biomass synthesis, it was shown that the strain synthesizes L-lysine with an intrinsic yield, or efficiency, of about 0.41 mol L-lysine/mol glucose, compared with the theoretical yield of 0.75 mol/mol. Metabolic flux modeling based on the continuous culture data suggests that the production of ATP is not likely to be a limiting factor in L-lysine production, and that a high TCA cycle activity, coupled with a tightly controlled split of metabolite flow at the PEP node, is likely the cause of the large discrepancy between theoretical and actual yields in L-lysine fermentations.  相似文献   

2.
myo-Inositol transport by retinal capillary pericytes in culture was characterized. The major myo-inositol transport process was sodium-dependent, ouabain-sensitive, and saturable at 40 mM, indicating a carrier-mediated process. The sodium ion concentration required to produce one-half the maximal rate of myo-inositol uptake ([Na+]0.5) did not show dependence on the external myo-inositol concentration (22.3 mM sodium for 0.005 mM myo-inositol; 18.2 mM sodium for 0.05 mM myo-inositol). myo-Inositol transport was an energy-dependent, active process functioning against a myo-inositol concentration gradient. The kinetics of the sodium-dependent system fitted a 'velocity type' co-transport model where binding of sodium ion to the carrier increased the velocity (Vmax 28 to 313 pmol myo-inositol/micrograms DNA per 20 min when [Na+] varied from 9 to 150 mM) but not the affinity for myo-inositol (Km 0.92 to 0.83 mM when [Na+] varied from 9 to 150 mM). Metabolizable hexoses (D-glucose or D-galactose; greater than 5 mM) inhibited myo-inositol uptake. Dixon-plot analysis indicated that the inhibition was non-competitive with a Ki of 22.7 mM for D-glucose and 72.6 mM for D-galactose. The inhibition was significantly reversed by Sorbinil (0.1 mM), an aldose reductase inhibitor. In contrast, high concentrations of non-metabolizable hexoses (L-glucose, 3-O-methyl-D-glucose), or partially metabolizable 2-deoxy-D-glucose, did not significantly inhibit myo-inositol uptake. The inhibitory effect of D-glucose or D-galactose on myo-inositol transport appeared to be related to glucose or galactose metabolism via the polyol pathway.  相似文献   

3.
We have recently developed a new L-lysine-producing mutant of Corynebacterium glutamicum by "genome breeding" consisting of characterization and reconstitution of a mutation set essential for high-level production. The strain AHP-3 was examined for L-lysine fermentation on glucose at temperatures above 35 degrees C, at which no examples of efficient L-lysine production have been reported for this organism. We found that the strain had inherited the thermotolerance that the original coryneform bacteria was endowed with, and thereby grew and produced L-lysine efficiently up to 41 degrees C. A final titer of 85 g/l after only 28 h was achieved at temperatures around 40 degrees C, indicating the superior performance of the strain developed by genome breeding. When compared with the traditional 30 degrees C fermentation, the 40 degrees C fermentation allowed an increase in yield of about 20% with a concomitant decrease in final growth level, suggesting a significant transition of carbon flux distribution in glucose metabolism. DNA array analysis of metabolic changes between the 30 degrees C and 40 degrees C fermentations identified several differentially expressed genes in central carbon metabolism although we could not find stringent control-like global induction of amino-acid-biosynthetic genes in the 40 degrees C fermentation. Among these changes, two candidates were picked out as the potential causes of the increased production at 40 degrees C; decreased expression of the citrate synthase gene gltA and increased expression of malE, the product of which involves regeneration of pyruvate and NADPH.  相似文献   

4.
Neuroblastoma cells were used to determine the effect of sorbinil on myo-inositol metabolism in cells exposed to elevated levels of glucose in culture. Exposing cells to elevated levels of glucose led to an increase in levels of intracellular sorbitol. The increase in sorbitol levels was dependent on the extracellular glucose concentration. In contrast, the myo-inositol content of cells was decreased in the presence of increasing concentrations of extracellular glucose. Increasing the concentration of glucose in the culture medium caused a decrease in myo-inositol uptake and in the incorporation of extracellular myo-inositol into phospholipid. The effect of elevated glucose levels on myo-inositol metabolism and sorbitol accumulation was blocked by addition of 0.4 mM sorbinil. The ability of sorbinil to block the decrease in myo-inositol metabolism and sorbitol accumulation caused by 30 mM extracellular glucose was dependent on its concentration. Maximal effects were obtained with 0.4 mM sorbinil. However, there was some variation in the degree of effectiveness among batches of sorbinil. These results at the cellular level suggest that the intracellular accumulation of sorbitol is responsible for the alteration of myo-inositol metabolism observed in neuroblastoma cells exposed to elevated glucose concentrations.  相似文献   

5.
Neuroblastoma cells were used to analyze the effect of elevated glucose levels on myo-inositol metabolism and Na+/K+-pump activity. The activity of the Na+/K+ pump in neuroblastoma cells is almost totally sensitive to ouabain inhibition. Culturing neuroblastoma cells in 30 mM glucose caused a significant decrease in Na+/K+-pump activity, myo-inositol metabolism, and myo-inositol content, compared to cells grown in the presence of 30 mM fructose. Glucose supplementation also caused a large intracellular accumulation of sorbitol. The aldose reductase inhibitor sorbinil prevented the abnormalities in myo-inositol metabolism and partially restored Na+/K+-pump activity in neuroblastoma cells cultured in the presence of elevated glucose levels. These results suggest that the accumulation of sorbitol by neuroblastoma cells exposed to elevated concentrations of extracellular glucose causes a decrease in myo-inositol metabolism and these abnormalities are associated with a reduction in Na+/K+-pump activity.  相似文献   

6.
The regulation exerted by ammonium and other nitrogen sources on amino acid utilization was studied in swollen spores of Penicillium chrysogenum. Ammonium prevented the L-lysine, L-arginine and L-ornithine utilization by P. chrysogenum swollen spores seeded in complete media, but not in carbon-deficient media. Transport of L-[14C]lysine into spores incubated in presence of carbon and nitrogen sources was fully inhibited by ammonium ions (35 mM). However, in carbon-derepressed conditions (growth in absence of sugars, with amino acids as the sole carbon source) L-[14C]lysine transport was only partially inhibited. Competition experiments showed that L-lysine (1 mM) inhibits the utilization of L-arginine, and vice versa, L-arginine inhibits the L-lysine uptake. High concentrations of L-ornithine (100 mM) prevented the L-lysine and L-arginine utilization in P. chrysogenum swollen spores. In summary, ammonium seems to prevent the utilization of basic amino acids in P. chrysogenum spores by inhibiting the transport of these amino acids through their specific transport system(s), but not through the general amino acid transport system that is operative under carbon-derepression conditions.  相似文献   

7.
It has been proposed that abnormal myo-inositol metabolism may be a factor in the development of diabetic complications. Studies with animal models of diabetes and cultured cells have suggested that hyperglycemia by an unknown mechanism may alter myo-inositol metabolism and content. Recently, we have shown that L-fucose, a 6-deoxy sugar whose content has been reported to be increased in diabetes, is a potent inhibitor of myo-inositol transport. To examine the effect of L-fucose on myo-inositol metabolism, neuroblastoma cells were cultured in medium supplemented with L-fucose. L-Fucose is a competitive inhibitor of Na(+)-dependent, high-affinity myo-inositol transport. The Ki for inhibition of myo-inositol transport by L-fucose is about 3 mM. L-Fucose is taken up and accumulates in neuroblastoma cells. The uptake of L-fucose is inhibited by Na+ depletion, D-glucose, glucose analogues, phloridzin, and cytochalasin B. In contrast, neither myo-inositol nor L-glucose inhibits L-fucose uptake. Chronic exposure of neuroblastoma cells to 1-30 mM L-fucose causes a decrease in myo-inositol accumulation and incorporation into inositol phospholipids, intracellular free myo-inositol content, and phosphatidylinositol levels. Na+,K(+)-ATPase transport activity is decreased by about 15% by acute or chronic exposure of neuroblastoma cells to L-fucose. Similar defects occur when neuroblastoma cells are exposed chronically to 30 mM glucose. Cell myo-inositol metabolism and Na+/K(+)-pump activity are maintained when 250 microM myo-inositol is added to the L-fucose-supplemented medium. Unlike the effect of chronic exposure of neuroblastoma cells to medium containing 30 mM glucose, the resting membrane potential of neuroblastoma cells is not altered by chronic exposure of the cells to 30 mM L-fucose. The effect of L-fucose on cultured neuroblastoma cell properties occurs at concentrations of L-fucose which may exist in the diabetic milieu. These data suggest that increased concentrations of L-fucose may have a role in myo-inositol-related defects in mammalian cells.  相似文献   

8.
It is possible that the low levels of production of exopolysaccharides (EPSs) by lactic acid bacteria could be improved by altering the levels of enzymes in the central metabolism that influence the production of precursor nucleotide sugars. To test this hypothesis, we identified and cloned the galU gene, which codes for UDP glucose pyrophosphorylase (GalU) in Streptococcus thermophilus LY03. Homologous overexpression of the gene led to a 10-fold increase in GalU activity but did not have any effect on the EPS yield when lactose was the carbon source. However, when galU was overexpressed in combination with pgmA, which encodes phosphoglucomutase (PGM), the EPS yield increased from 0.17 to 0.31 g/mol of carbon from lactose. A galactose-fermenting LY03 mutant (Gal(+)) with increased activities of the Leloir enzymes was also found to have a higher EPS yield (0.24 g/mol of carbon) than the parent strain. The EPS yield was further improved to 0.27 g/mol of carbon by overexpressing galU in this strain. However, the highest EPS yield, 0.36 g/mol of carbon, was obtained when pgmA was knocked out in the Gal(+) strain. Measurements of the levels of intracellular metabolites in the cultures revealed that the Gal(+) strains had considerably higher glucose 1-phosphate levels than the other strains, and the strain lacking PGM activity had threefold-higher levels of glucose 1-phosphate than the other Gal(+) strains. These results show that it is possible to increase EPS production by altering the levels of enzymes in the central carbohydrate metabolism.  相似文献   

9.
10.
11.
12.
Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70 degrees C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extreme-thermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70 degrees C, and fed with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H(2)/mol glucose consumed) but required longer start up time (1 month), while a biofilm reactor directly inoculated with the enrichment cultures reached stable state much faster (8 days) but with very low hydrogen yield (0.69 mol H(2)/mol glucose consumed). These results indicate that hydraulic pressure is necessary for successful immobilization of bacteria on carriers, while there is the risk of washing out specific high yielding bacteria.  相似文献   

13.
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast.  相似文献   

14.
Myo-inositol uptake by erythrocytes from humans, rabbits and rats was studied with an isotope technique. In human erythrocytes, the inhibitory effect on myo-inositol uptake was stronger with glucose than with ouabain. However, an aldose reductase inhibitor (ONO-2235, 100 microM) or insulin (200 microU/ml) failed to correct the decrease in myo-inositol uptake in packed RBC, produced by either 10 mM glucose or 2mM ouabain. Ten mM ouabain had an inhibitory effect on myo-inositol uptake in all species, but an inhibitory effect was not observed with 20 mM glucose in rabbit erythrocytes. The results suggest that myo-inositol uptake by erythrocytes may be dependent on the active transport system via sodium-ATPase and that erythrocytes may not be a suitable model to monitor the possible effect of an aldose reductase inhibitor on myo-inositol concentrations in other tissues concerned with diabetic complications.  相似文献   

15.
Neuroblastoma cells were used to determine the effect of high carbohydrate and polyol levels on myo-inositol metabolism. The presence of elevated concentrations of glucose or sorbitol caused a significant decrease in both inositol accumulation and incorporation into phospholipid. These conditions, however, did not alter the accumulation of the other phospholipid head groups or the growth rate and water content of the cells. Two weeks of growth in either of the modified conditions was necessary to obtain a maximal effect on inositol incorporation. In contrast, growth in elevated concentrations of fructose, mannitol, or dulcitol had no effect on inositol metabolism. The reduced inositol accumulation and incorporation into lipids seen with glucose or sorbitol supplementation resulted in a decrease in the total phosphatidylinositol content of the cell without changing the levels of the other phospholipids. Kinetic analysis of cells grown in the presence of elevated glucose indicated that V'max for inositol uptake was significantly decreased with little change in the K'm. These data suggest that glucose decreases myo-inositol uptake in this system by noncompetitive inhibition. Cells grown in the presence of increased glucose also had elevated levels of intracellular sorbitol and decreased levels of myo-inositol. These results suggest that the high levels of glucose and sorbitol which exist in poorly regulated diabetes may be at least partially responsible for diabetic neuropathy via a reduction in the cellular content of myo-inositol and phosphatidylinositol. This system may be a useful model to determine the effect of reduced inositol phospholipid levels on neural cell function.  相似文献   

16.
Glutamine and glucose as energy substrates for Ehrlich ascites tumour cells   总被引:4,自引:0,他引:4  
Energy metabolism of freshly harvested Ehrlich ascites tumour cells in the presence of 5 mM glucose and/or 0.5 mM glutamine was studied. The rate of oxygen utilization was not altered by the addition of 0.5 mM glutamine; 5 mM glucose induced an inhibition of respiration. In the presence of both glucose and glutamine, the Crabtree effect decreased. In these conditions, the rates of oxygen uptake, the CO2 evolution and the changes in the redox states of cytochromes indicate that glucose is preferred by Ehrlich ascites tumour cells as energy substrate. Glucose decreased the rate of glutamine utilization by 34%. On the other hand, glutaminolysis did not inhibit glycolysis.  相似文献   

17.
Aldose reductase activity is increased in neuroblastoma cells grown in media containing 30 mM fructose and/or 30 mM glucose. Neuroblastoma cells cultured in media supplemented with increased concentrations of glucose and fructose amass greater amounts of sorbitol than do cells exposed to media containing only high glucose concentrations. The increase in sorbitol content is dependent on the fructose and glucose concentration in the media. The increase in sorbitol content caused by exposing neuroblastoma cells to media containing 30 mM glucose/30 mM fructose is due to a protein synthesis sensitive mechanism and not to an alteration in the redox state. The addition of sorbinil to media containing 30 mM glucose blocks the increase in sorbitol content. In contrast, sorbinil treatment of media containing 30 mM glucose/30 mM fructose does not totally block the increase in sorbitol levels. myo-Inositol accumulation and incorporation into inositol phospholipids and intracellular myo-inositol content are decreased in cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose compared to cells cultured in unsupplemented media or media containing 30 mM fructose. However, maximal depletion of myo-inositol accumulation and intracellular content occurs earlier in cells exposed to media containing 30 mM glucose/30 mM fructose than in cells exposed to media supplemented with 30 mM glucose. Sorbinil treatment of media containing 30 mM glucose/30 mM fructose maintains cellular myo-inositol accumulation and incorporation into phospholipids at near normal levels. myo-Inositol content in neuroblastoma cells chronically exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose recovers within 72 h when the cells are transferred to unsupplemented media or media containing 30 mM fructose. In contrast, the sorbitol content of cells previously exposed to media containing 30 mM glucose or 30 mM glucose/30 mM fructose then transferred into media containing 30 mM fructose remains elevated compared to the sorbitol content of cells transferred into unsupplemented media. These data suggest that fructose may be activating or increasing sorbinil-resistant aldose reductase activity as well as partially blocking sorbitol dehydrogenase activity. The presence of increased concentrations of fructose in combination with increased glucose levels may enhance alterations in cell metabolism and properties due to increased sorbitol levels.  相似文献   

18.
琥珀酸是一种具有重要应用价值的生物基平台化合物。对大肠杆菌focA-pflB ldhA突变株QQS101在严格厌氧条件下生长和葡萄糖代谢能力进行了考察,比较分析了葡萄糖与大肠杆菌混合酸发酵产物的单位碳的还原程度,认为非严格厌氧条件有利于QQS101发酵葡萄糖积累琥珀酸,进一步对有氧生长碳源进行了对比试验的结果表明,以木糖支持有氧生长,QQS101摇瓶发酵39 h消耗葡萄糖37.6 g/L,琥珀酸的产量达到31.01 g/L,摩尔产率为1.258 mol Succinate/mol Glucose。发酵过程中,丙氨酸的添加能够提高琥珀酸的摩尔产率。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号