首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The idea of offsetting anthropogenic CO2 emissions by increasing global soil organic carbon (SOC), as recently proposed by French authorities ahead of COP21 in the ‘four per mil’ initiative, is notable. However, a high uncertainty still exits on land C balance components. In particular, the role of erosion in the global C cycle is not totally disentangled, leading to disagreement whether this process induces lands to be a source or sink of CO2. To investigate this issue, we coupled soil erosion into a biogeochemistry model, running at 1 km2 resolution across the agricultural soils of the European Union (EU). Based on data‐driven assumptions, the simulation took into account also soil deposition within grid cells and the potential C export to riverine systems, in a way to be conservative in a mass balance. We estimated that 143 of 187 Mha have C erosion rates <0.05 Mg C ha?1 yr?1, although some hot‐spot areas showed eroded SOC >0.45 Mg C ha?1 yr?1. In comparison with a baseline without erosion, the model suggested an erosion‐induced sink of atmospheric C consistent with previous empirical‐based studies. Integrating all C fluxes for the EU agricultural soils, we estimated a net C loss or gain of ?2.28 and +0.79 Tg yr?1 of CO2eq, respectively, depending on the value for the short‐term enhancement of soil C mineralization due to soil disruption and displacement/transport with erosion. We concluded that erosion fluxes were in the same order of current carbon gains from improved management. Even if erosion could potentially induce a sink for atmospheric CO2, strong agricultural policies are needed to prevent or reduce soil erosion, in order to maintain soil health and productivity.  相似文献   

2.
Losses of soil organic carbon under wind erosion in China   总被引:7,自引:0,他引:7  
Soil organic carbon (SOC) storage generally represents the long‐term net balance of photosynthesis and total respiration in terrestrial ecosystems. However, soil erosion can affect SOC content by direct removal of soil and reduction of the surface soil depth; it also affects plant growth and soil biological activity, soil air CO2 concentration, water regimes, soil temperature, soil respiration, carbon flux to the atmosphere, and carbon deposition in soil. In arid and semi‐arid region of northern China, wind erosion caused soil degradation and desert expansion. This paper estimated the SOC loss of the surface horizon at eroded regions based on soil property and wind erosion intensity data. The SOC loss in China because of wind erosion was about 75 Tg C yr?1 in 1990s. The spatial pattern of SOC loss indicates that SOC loss of the surface horizon increases significantly with the increase of soil wind erosion intensity. The comparison of SOC loss and annual net primary productivity (NPP) of terrestrial ecosystem was discussed in wind erosion regions of China. We found that NPP is also low in the eroded regions and heavy SOC loss often occurs in regions where NPP is very small. However, there is potential to improve our study to resolve uncertainty on the soil organic matter oxidation and soil deposition processes in eroded and deposited sites.  相似文献   

3.
The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15–50% slower when an erosion rate of 15 t soil ha?1 yr?1 was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3–1.0 t CO2 ha?1 yr?1. This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.  相似文献   

4.
Anthropogenically induced change in soil redistribution plays an important role in the soil organic carbon (SOC) budget. Uncertainty of its impact is large because of the dearth of recent soil redistribution estimates concomitant with changing land use and management practices. An Australian national survey used the artificial radionuclide caesium‐137 (137Cs) to estimate net (1950s–1990) soil redistribution. South‐eastern Australia showed a median net soil loss of 9.7 t ha?1 yr?1. We resurveyed the region using the same 137Cs technique and found a median net (1990–2010) soil gain of 3.9 t ha?1 yr?1 with an interquartile range from ?1.6 t ha?1 yr?1 to +10.7 t ha?1 yr?1. Despite this variation, soil erosion across the region has declined as a likely consequence of the widespread adoption of soil conservation measures over the last ca 30 years. The implication of omitted soil redistribution dynamics in SOC accounting is to increase uncertainty and diminish its accuracy.  相似文献   

5.
Soil C erosion and burial in cropland   总被引:2,自引:0,他引:2  
Erosion influences the lateral and vertical distribution of soil in agricultural landscapes. A better understanding of the effects of erosion and redistribution on soil organic carbon (C) within croplands would improve our knowledge of how management practices may affect global C dynamics. In this study, the vertical and lateral distribution of soil organic C was characterized to evaluate the amounts and timescales of soil organic C movement, deposition and burial over the last 50 years in different agroecosystems across Canada. There was strong evidence that a substantial portion of eroded sediment and soil organic C was deposited as colluvium close to its source area, thereby burying the original topsoil. The deepest aggraded profile was in a potato field and contained over 70 cm of deposited soil indicating an accumulation rate of 152 Mg ha yr?1; aggraded profiles in other sites had soil deposition rates of 40–90 Mg ha?1 yr?1. The largest stock of soil organic C was 463 Mg ha?1 (to 60 cm depth) and soil C deposition ranged from about 2 to 4 Mg ha?1 yr?1 across all sites. A distinct feature observed in the aggraded profiles at every site was the presence of a large increase in soil organic C concentration near the bottom of the A horizon; the concentration of this C was greater than that at the soil surface. Compared to aggraded profiles, the SOC concentration in eroded profiles did not differ with depth, suggesting that dynamic replacement of soil organic C had occurred in eroded soils. A large amount of soil organic C is buried in depositional areas of Canadian croplands; mineralization of this stock of C appears to have been constrained since burial, but it may be vulnerable to future loss by management practices, land use change and a warming climate.  相似文献   

6.
Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO2) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO2 and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO2 emission. We developed a first approximation to SOC enrichment for a well‐established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO2‐e yr?1) and Australian agricultural soils (0.4 Tg CO2‐e yr?1). These amount to underestimates for CO2 emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations’ C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind‐eroded SOC in the dust cycle is therefore essential to quantify the release of CO2 from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.  相似文献   

7.
Soil carbon stores amount to 54% of the terrestrial carbon pool and twice the atmospheric carbon pool, but soil organic carbon (SOC) can be transient. There is an ongoing debate about whether soils are a net source or sink of carbon, and understanding the role of aeolian processes in SOC erosion, transport and deposition is rudimentary. The impacts of SOC erosion by wind on the global carbon budget, and its importance for carbon accounting remain largely unknown. Current understanding of SOC losses to wind erosion is based on the assumption that the SOC content of eroded material is the same as that of the parent soils. However, measured enrichment factors for the SOC content of Australian dusts relative to parent soils show that the SOC content of dusts can be up to seven times (by weight) larger than that of source‐area soils, with enrichment factors ranging from 1.67 to 7.09. Assuming dust emissions from the continent of ~110 Mt yr?1, SOC dust emissions would be 0.13–4.65 Mt SOC yr?1 without enrichment but 0.94–7.77 Mt SOC yr?1 with enrichment; which represents an uncertainty of around 60%. Representing SOC enrichment within dust emission models will reduce uncertainty in estimates of the impact of wind erosion on SOC flux and provide an approach for the inclusion of wind erosion processes in carbon accounting systems.  相似文献   

8.
Anthropogenic soil erosion severely affects land ecosystems by reducing plant productivity and stimulating horizontal carbon and nitrogen movement at the surface. Climate warming may accelerate soil erosion by altering soil temperature, moisture, and vegetation coverage. However, no experiments have been carried out to quantify soil erosion with warming. In a long‐term field experiment, we explored how annual clipping for biofuel feedstock production and warming caused soil erosion and accompanying carbon and nitrogen losses in tallgrass prairie in Oklahoma, USA. We measured relative changes in soil surface elevation between clipped and unclipped plots with or without experimental warming. Our results show that average relative erosion depth caused by clipping was 1.65±0.09 and 0.54±0.08 mm yr?1, respectively, in warmed and control plots from November 21, 1999 to April 21, 2009. The soil erosion rate was 2148±121 g m?2 yr?1 in the warmed plots and 693±113 g m?2 yr?1 in the control plots. Soil organic carbon was lost at a rate of 69.6±5.6 g m?2 yr?1 in the warmed plots and 22.5±2.7 g m?2 yr?1 in the control plots. Total nitrogen was lost at a rate of 4.6±0.4 g m?2 yr?1 in the warmed plots and 1.4±0.1 g m?2 yr?2 in the control plots. The amount of carbon and nitrogen loss caused by clipping is equivalent to or even larger than changes caused by global change factors such as warming and rising atmospheric CO2 concentration. In addition, soil erosion rates were significantly correlated with clipping‐induced changes in soil moisture. Our results suggest that clipping for biofuel harvest results in significant soil erosion and accompanying losses of soil carbon and nitrogen, which is aggravated by warming.  相似文献   

9.
土壤有机碳动态:风蚀效应   总被引:10,自引:0,他引:10  
苏永中  赵文智 《生态学报》2005,25(8):2049-2054
土壤风蚀是引起土壤退化最广泛的形式和原因之一。土壤风蚀对土壤碳动态的影响机制一方面是土壤风蚀引起土壤退化使土壤生产力下降,输入土壤的碳数量减少;另一方面是富含有机碳的细粒物质直接移出系统。风蚀土壤碳的去向包括:(1)就近沉积,(2)沉积于水渠和河流,输入水体;(3)以粉尘形式运移,在远离风蚀区的地域沉积;(4)氧化释放至大气。风蚀引起土壤碳的迁移和沉积不仅导致土壤有机碳在地域间的再分布,使土壤性状的空间异质性增加,也显著改变了土壤系统中碳矿化的生物学过程。土壤有机碳的保持可以促进团聚体的形成,使土壤物理稳定性增加,减缓风蚀。对易风蚀土地进行退耕还林还草、实行保护性耕作等措施可以有效增加土壤碳的固存。  相似文献   

10.
Agricultural management has received increased attention over the last decades due to its central role in carbon (C) sequestration and greenhouse gas mitigation. Yet, regardless of the large body of literature on the effects of soil erosion by tillage and water on soil organic carbon (SOC) stocks in agricultural landscapes, the significance of soil redistribution for the overall C budget and the C sequestration potential of land management options remains poorly quantified. In this study, we explore the role of lateral SOC fluxes in regional scale modelling of SOC stocks under three different agricultural management practices in central Belgium: conventional tillage (CT), reduced tillage (RT) and reduced tillage with additional carbon input (RT+i). We assessed each management scenario twice: using a conventional approach that did not account for lateral fluxes and an alternative approach that included soil erosion‐induced lateral SOC fluxes. The results show that accounting for lateral fluxes increased C sequestration rates by 2.7, 2.5 and 1.5 g C m?2 yr?1 for CT, RT and RT+i, respectively, relative to the conventional approach. Soil redistribution also led to a reduction of SOC concentration in the plough layer and increased the spatial variability of SOC stocks, suggesting that C sequestration studies relying on changes in the plough layer may underestimate the soil's C sequestration potential due to the effects of soil erosion. Additionally, lateral C export from cropland was in the same of order of magnitude as C sequestration; hence, the fate of C exported from cropland into other land uses is crucial to determine the ultimate impact of management and erosion on the landscape C balance. Consequently, soil management strategies targeting C sequestration will be most effective when accompanied by measures that reduce soil erosion given that erosion loss can balance potential C uptake, particularly in sloping areas.  相似文献   

11.
The effect of a transition from grassland to second‐generation (2G) bioenergy on soil carbon and greenhouse gas (GHG) balance is uncertain, with limited empirical data on which to validate landscape‐scale models, sustainability criteria and energy policies. Here, we quantified soil carbon, soil GHG emissions and whole ecosystem carbon balance for short rotation coppice (SRC) bioenergy willow and a paired grassland site, both planted at commercial scale. We quantified the carbon balance for a 2‐year period and captured the effects of a commercial harvest in the SRC willow at the end of the first cycle. Soil fluxes of nitrous oxide (N2O) and methane (CH4) did not contribute significantly to the GHG balance of these land uses. Soil respiration was lower in SRC willow (912 ± 42 g C m?2 yr?1) than in grassland (1522 ± 39 g C m?2 yr?1). Net ecosystem exchange (NEE) reflected this with the grassland a net source of carbon with mean NEE of 119 ± 10 g C m?2 yr?1 and SRC willow a net sink, ?620 ± 18 g C m?2 yr?1. When carbon removed from the ecosystem in harvested products was considered (Net Biome Productivity), SRC willow remained a net sink (221 ± 66 g C m?2 yr?1). Despite the SRC willow site being a net sink for carbon, soil carbon stocks (0–30 cm) were higher under the grassland. There was a larger NEE and increase in ecosystem respiration in the SRC willow after harvest; however, the site still remained a carbon sink. Our results indicate that once established, significant carbon savings are likely in SRC willow compared with the minimally managed grassland at this site. Although these observed impacts may be site and management dependent, they provide evidence that land‐use transition to 2G bioenergy has potential to provide a significant improvement on the ecosystem service of climate regulation relative to grassland systems.  相似文献   

12.
We used a spatially nested hierarchy of field and remote‐sensing observations and a process model, Biome‐BGC, to produce a carbon budget for the forested region of Oregon, and to determine the relative influence of differences in climate and disturbance among the ecoregions on carbon stocks and fluxes. The simulations suggest that annual net uptake (net ecosystem production (NEP)) for the whole forested region (8.2 million hectares) was 13.8 Tg C (168 g C m?2 yr?1), with the highest mean uptake in the Coast Range ecoregion (226 g C m?2 yr?1), and the lowest mean NEP in the East Cascades (EC) ecoregion (88 g C m?2 yr?1). Carbon stocks totaled 2765 Tg C (33 700 g C m?2), with wide variability among ecoregions in the mean stock and in the partitioning above‐ and belowground. The flux of carbon from the land to the atmosphere that is driven by wildfire was relatively low during the late 1990s (~0.1 Tg C yr?1), however, wildfires in 2002 generated a much larger C source (~4.1 Tg C). Annual harvest removals from the study area over the period 1995–2000 were ~5.5 Tg C yr?1. The removals were disproportionately from the Coast Range, which is heavily managed for timber production (approximately 50% of all of Oregon's forest land has been managed for timber in the past 5 years). The estimate for the annual increase in C stored in long‐lived forest products and land fills was 1.4 Tg C yr?1. Net biome production (NBP) on the land, the net effect of NEP, harvest removals, and wildfire emissions indicates that the study area was a sink (8.2 Tg C yr?1). NBP of the study area, which is the more heavily forested half of the state, compensated for ~52% of Oregon's fossil carbon dioxide emissions of 15.6 Tg C yr?1 in 2000. The Biscuit Fire in 2002 reduced NBP dramatically, exacerbating net emissions that year. The regional total reflects the strong east–west gradient in potential productivity associated with the climatic gradient, and a disturbance regime that has been dominated in recent decades by commercial forestry.  相似文献   

13.
Enhanced sequestration of plant‐carbon (C) inputs to soil may mitigate rising atmospheric carbon dioxide (CO2) concentrations and related climate change but how this sequestration will respond to anthropogenic nitrogen (N) and phosphorous (P) deposition is uncertain. We couple isotope, soil C fractionation and mesocosm techniques to assess the sequestration of plant‐C inputs, and their partitioning into C pools with different sink potentials, under an experimental gradient of N and P deposition (0, 10, 30, 60 and 100 kg N ha?1 yr?1; and 0, 2, 6, 12 and 20 kg P ha?1 yr?1). We hypothesized that N deposition would increase sequestration, with the majority of the C being sequestered in faster cycling soil pools because N deposition has been shown to accelerate the turnover of these pools while decelerating the turnover of slower cycling pools. In contrast to this hypothesis, sequestration into all soil C pools peaked at intermediate levels of N deposition. Given that P amendment has been shown to cause a net loss of soil C, we postulated that P deposition would decrease sequestration. This expectation was not supported by our data, with sequestration generally being greater under P deposition. When soils were amended simultaneously with N and P, neither the shape of the sequestration relationship across the deposition gradient, nor the observed sequestration at the majority of the deposition rates, was statistically predictable from the effects of N and P in isolation. The profound nonlinearities we observed, both for total sequestration responses and the partitioning of C into soil pools with different sink potentials, suggests that the rates of N and P deposition to ecosystems will be the critical determinant of whether they enhance or decrease the long‐term sequestration of fresh plant‐C inputs to soils.  相似文献   

14.
We estimated the long‐term carbon balance [net biome production (NBP)] of European (EU‐25) croplands and its component fluxes, over the last two decades. Net primary production (NPP) estimates, from different data sources ranged between 490 and 846 gC m?2 yr?1, and mostly reflect uncertainties in allocation, and in cropland area when using yield statistics. Inventories of soil C change over arable lands may be the most reliable source of information on NBP, but inventories lack full and harmonized coverage of EU‐25. From a compilation of inventories we infer a mean loss of soil C amounting to 17 g m?2 yr?1. In addition, three process‐based models, driven by historical climate and evolving agricultural technology, estimate a small sink of 15 g C m?2 yr?1 or a small source of 7.6 g C m?2 yr?1. Neither the soil C inventory data, nor the process model results support the previous European‐scale NBP estimate by Janssens and colleagues of a large soil C loss of 90 ± 50 gC m?2 yr?1. Discrepancy between measured and modeled NBP is caused by erosion which is not inventoried, and the burning of harvest residues which is not modeled. When correcting the inventory NBP for the erosion flux, and the modeled NBP for agricultural fire losses, the discrepancy is reduced, and cropland NBP ranges between ?8.3 ± 13 and ?13 ± 33 g C m?2 yr?1 from the mean of the models and inventories, respectively. The mean nitrous oxide (N2O) flux estimates ranges between 32 and 37 g C Eq m?2 yr?1, which nearly doubles the CO2 losses. European croplands act as small CH4 sink of 3.3 g C Eq m?2 yr?1. Considering ecosystem CO2, N2O and CH4 fluxes provides for the net greenhouse gas balance a net source of 42–47 g C Eq m?2 yr?1. Intensifying agriculture in Eastern Europe to the same level Western Europe amounts is expected to result in a near doubling of the N2O emissions in Eastern Europe. N2O emissions will then become the main source of concern for the impact of European agriculture on climate.  相似文献   

15.
We develop an approach for estimating net ecosystem exchange (NEE) using inventory‐based information over North America (NA) for a recent 7‐year period (ca. 2000–2006). The approach notably retains information on the spatial distribution of NEE, or the vertical exchange between land and atmosphere of all non‐fossil fuel sources and sinks of CO2, while accounting for lateral transfers of forest and crop products as well as their eventual emissions. The total NEE estimate of a ?327 ± 252 TgC yr?1 sink for NA was driven primarily by CO2 uptake in the Forest Lands sector (?248 TgC yr?1), largely in the Northwest and Southeast regions of the US, and in the Crop Lands sector (?297 TgC yr?1), predominantly in the Midwest US states. These sinks are counteracted by the carbon source estimated for the Other Lands sector (+218 TgC yr?1), where much of the forest and crop products are assumed to be returned to the atmosphere (through livestock and human consumption). The ecosystems of Mexico are estimated to be a small net source (+18 TgC yr?1) due to land use change between 1993 and 2002. We compare these inventory‐based estimates with results from a suite of terrestrial biosphere and atmospheric inversion models, where the mean continental‐scale NEE estimate for each ensemble is ?511 TgC yr?1 and ?931 TgC yr?1, respectively. In the modeling approaches, all sectors, including Other Lands, were generally estimated to be a carbon sink, driven in part by assumed CO2 fertilization and/or lack of consideration of carbon sources from disturbances and product emissions. Additional fluxes not measured by the inventories, although highly uncertain, could add an additional ?239 TgC yr?1 to the inventory‐based NA sink estimate, thus suggesting some convergence with the modeling approaches.  相似文献   

16.
Uncertainty was quantified for an inventory estimating change in soil organic carbon (SOC) storage resulting from modifications in land use and management across US agricultural lands between 1982 and 1997. This inventory was conducted using a modified version of a carbon (C) accounting method developed by the Intergovernmental Panel on Climate Change (IPCC). Probability density functions (PDFs) were derived for each input to the IPCC model, including reference SOC stocks, land use/management activity data, and management factors. Change in C storage was estimated using a Monte‐Carlo approach with 50 000 iterations, by randomly selecting values from the PDFs after accounting for dependencies in the model inputs. Over the inventory period, mineral soils had a net gain of 10.8 Tg C yr?1, with a 95% confidence interval ranging from 6.5 to 15.3 Tg C yr?1. Most of this gain was due to setting‐aside lands in the Conservation Reserve Program. In contrast, managed organic soils lost 9.4 Tg C yr?1, with a 95% confidence interval ranging from 6.4 to 13.3 Tg C yr?1. Combining these gains and losses in SOC, US agricultural soils accrued 1.3 Tg C yr?1 due to land use and management change, with a 95% confidence interval ranging from a loss of 4.4 Tg C yr?1 to a gain of 6.9 Tg C yr?1. Most of the uncertainty was attributed to management factors for tillage, land use change between cultivated and uncultivated conditions, and C loss rates from managed organic soils. Based on the uncertainty, we are not able to conclude with 95% confidence that change in US agricultural land use and management between 1982 and 1997 created a net C sink for atmospheric CO2.  相似文献   

17.
Temperate forest ecosystems have recently been identified as an important net sink in the global carbon budget. The factors responsible for the strength of the sinks and their permanence, however, are less evident. In this paper, we quantify the present carbon sequestration in Thuringian managed coniferous forests. We quantify the effects of indirect human‐induced environmental changes (increasing temperature, increasing atmospheric CO2 concentration and nitrogen fertilization), during the last century using BIOME‐BGC, as well as the legacy effect of the current age‐class distribution (forest inventories and BIOME‐BGC). We focused on coniferous forests because these forests represent a large area of central European forests and detailed forest inventories were available. The model indicates that environmental changes induced an increase in biomass C accumulation for all age classes during the last 20 years (1982–2001). Young and old stands had the highest changes in the biomass C accumulation during this period. During the last century mature stands (older than 80 years) turned from being almost carbon neutral to carbon sinks. In high elevations nitrogen deposition explained most of the increase of net ecosystem production (NEP) of forests. CO2 fertilization was the main factor increasing NEP of forests in the middle and low elevations. According to the model, at present, total biomass C accumulation in coniferous forests of Thuringia was estimated at 1.51 t C ha?1 yr?1 with an averaged annual NEP of 1.42 t C ha?1 yr?1 and total net biome production of 1.03 t C ha?1 yr?1 (accounting for harvest). The annual averaged biomass carbon balance (BCB: biomass accumulation rate‐harvest) was 1.12 t C ha?1 yr?1 (not including soil respiration), and was close to BCB from forest inventories (1.15 t C ha?1 yr?1). Indirect human impact resulted in 33% increase in modeled biomass carbon accumulation in coniferous forests in Thuringia during the last century. From the forest inventory data we estimated the legacy effect of the age‐class distribution to account for 17% of the inventory‐based sink. Isolating the environmental change effects showed that these effects can be large in a long‐term, managed conifer forest.  相似文献   

18.
19.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

20.
In order to quantify the historical changes in carbon storage that result from agricultural conversion, this study compared the carbon dynamics of two sites in the loess region of Iowa: a native prairie and a cropland. Field data were obtained to determine present‐day carbon storage and its variability within a landscape (a stable ridgetop vs. eroding upper‐midslope vs. depositional lower slope). Models were used to recreate the historical carbon budget of these sites and determine the cropland's potential to be a net CO2 source or sink, relative to the atmosphere. Regardless of slope position, the cropland site contains approximately half the amount of carbon as prairie. Variability in soil carbon storage within a site as a consequence of slope position is as large or larger (variations of 200–300%) than temporal variation (~200% at all slope positions). The most extreme difference in soil carbon storage between the cropland and prairie sites is found in the soil at the upper‐midslope, which is the area of greatest erosion. The models estimate that 93–172% of the carbon in the original topsoil has been lost from the cropland's eroding midslope. Much of this carbon is derived from deeper soil horizons. Either a small sink or strong source of carbon to the atmosphere is created, depending on the fate of the eroded sediment and its associated carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号