首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Mesendoderm formation and left-right patterning during vertebrate development depend upon selected members of the transforming growth factor beta superfamily, particularly Nodal and Nodal-related ligands. Two type I serine/threonine kinase receptors have been identified for Nodal, ALK4 and ALK7. Mouse embryos lacking ALK4 fail to produce mesendoderm and die shortly after gastrulation, resembling the phenotype of Nodal knockout mice. Whether ALK4 contributes to left-right patterning is still unknown. Here we report the generation and initial characterization of mice lacking ALK7. Homozygous mutant mice were born at the expected frequency and remained viable and fertile. Viability at weaning was not different from that of the wild type in ALK7(-/-); Nodal(+/-) and ALK7(-/-); ALK4(+/-) compound mutants. ALK7 and ALK4 were highly expressed in interdigital regions of the developing limb bud. However, ALK7 mutant mice displayed no skeletal abnormalities or limb malformations. None of the left-right patterning abnormalities and organogenesis defects identified in mice carrying mutations in Nodal or in genes encoding ActRIIA and ActRIIB coreceptors, including heart malformations, pulmonary isomerism, right-sided gut, and spleen hypoplasia, were observed in mice lacking ALK7. Finally, the histological organization of the cerebellum, cortex, and hippocampus, all sites of significant ALK7 expression in the rodent brain, appeared normal in ALK7 mutant mice. We conclude that ALK7 is not an essential mediator of Nodal signaling during mesendoderm formation and left-right patterning in the mouse but may instead mediate other activities of Nodal and related ligands in the development or function of particular tissues and organs.  相似文献   

5.
Nodal, a member of the TGF‐β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF‐βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co‐receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44–67 of the Nodal protein, corresponding to the pre‐helix loop and the H3 helix, and reproduce the wild‐type sequence or bear some modifications to evaluate the hot‐spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
7.
Activins, like other members of the transforming growth factor-beta (TGF-beta) superfamily, initiate signaling by assembling a complex of two types of transmembrane serine/threonine receptor kinases classified as type II (ActRII or ActRIIB) and type I (ALK4). A kinase-deleted version of ALK4 can form an inactive complex with activin and ActRII/IIB and thereby acts in a dominant negative manner to block activin signaling. Using the complex structure of bone morphogenetic protein-2 bound to its type I receptor (ALK3) as a guide, we introduced extracellular domain mutations in the context of the truncated ALK4 (ALK4-trunc) construct and assessed the ability of the mutants to inhibit activin function. We have identified five hydrophobic amino acid residues on the ALK4 extracellular domain (Leu40, Ile70, Val73, Leu75, and Pro77) that, when mutated to alanine, have substantial effects on ALK4-trunc dominant negative activity. In addition, eleven mutants partially affected activin binding to ALK4. Together, these residues likely constitute the binding surface for activin on ALK4. Cross-linking studies measuring binding of 125I-activin-A to the ALK4-trunc mutants in the presence of ActRII implicated the same residues. Our results indicate that there is only a partial overlap of the binding sites on ALK4 and ALK3 for activin-A and bone morphogenetic protein-2, respectively. In addition three of the residues required for activin binding to ALK4 are conserved on the type I TGF-beta receptor ALK5, suggesting the corresponding region on ALK5 may be important for TGF-beta binding.  相似文献   

8.
9.
We have previously reported that Nodal, a member of the TGF-β superfamily, acts through activin receptor-like kinase 7 (ALK7) to inhibit ovarian cancer cell proliferation. To determine the mechanism underlying their effects, a cell cycle gene array was performed and cyclin G2 mRNA was found to be strongly up-regulated by Nodal and ALK7. To study the function and regulation of cyclin G2 in ovarian cancer cells, expression constructs were generated. We found that cyclin G2 protein level decreased rapidly after transfection, and this decrease was prevented by 26S proteasome inhibitors. Immunoprecipitation and pull-down studies showed that ubiquitin, Skp1, and Skp2 formed complexes with cyclin G2. Knockdown of Skp2 by siRNA increased, whereas overexpression of Skp2 decreased cyclin G2 levels. Nodal and ALK7 decreased the expression of Skp1 and Skp2 and increased cyclin G2 levels. Overexpression of cyclin G2 inhibited cell proliferation whereas cyclin G2-siRNA reduced the antiproliferative effect of Nodal and ALK7. Taken together, these findings provide strong evidence that cyclin G2 is degraded by the ubiquitin–proteasome pathway and that Skp2 plays a role in regulating cyclin G2 levels. Furthermore, our results also demonstrate that the antiproliferative effect of Nodal/ALK7 on ovarian cancer cells is in part mediated by cyclin G2.  相似文献   

10.
11.
12.
Activin, Nodal, and Vg1, members of the transforming growth factor beta (TGFbeta) superfamily, transduce signal through type I receptors ALK4 or ALK7 and play important roles in mesoderm induction and patterning during vertebrate embryogenesis. However, the timing and magnitude of the ALK4/ALK7-mediated maternal TGFbeta signals are not clear. SB-431542 is identified as an inhibitor of the ALK4/ALK5/ALK7-mediated TGFbeta signals and its specificity in vertebrate embryos has not been reported. We demonstrate that SB-431542 is able to specifically and reproducibly block the Smad2/3-mediated TGFbeta signals in zebrafish embryo. Embryos exposed to SB-431542 exhibit various defects phenocopying Nodal-deficient mutants. SB-431542 treatments starting at different cell cycles before the midblastula transition lead to different degrees of developmental defects in mesoderm induction and patterning, suggesting that maternal TGFbeta signals are activated right after fertilization and required for mesoderm formation and patterning.  相似文献   

13.
ORP3 is a member of the newly described family of oxysterol-binding protein (OSBP)-related proteins (ORPs). We previously demonstrated that this gene is highly expressed in CD34(+) hematopoietic progenitor cells, and deduced that the "full-length" ORP3 gene comprises 23 exons and encodes a predicted protein of 887 amino acids with a C-terminal OSBP domain and an N-terminal pleckstrin homology domain. To further characterize the gene, we cloned ORP3 cDNA from PCR products and identified multiple splice variants. A total of eight isoforms were demonstrated with alternative splicing of exons 9, 12, and 15. Isoforms with an extension to exon 15 truncate the OSBP domain of the predicted protein sequence. In human tissues there was specific isoform distribution, with most tissues expressing varied levels of isoforms with the complete OSBP domain; while only whole brain, kidney, spleen, thymus, and thyroid expressed high levels of the isoforms associated with the truncated OSBP domain. Interestingly, the expression in cerebellum, heart, and liver of most isoforms was negligible. These data suggest that differential mRNA splicing may have resulted in functionally distinct forms of the ORP3 gene.  相似文献   

14.
Human adipose tissue is a major site of expression of inhibin beta B (INHBB) which homodimerizes to form the novel adipokine activin B. Our aim was to determine if molecules needed for a local action of activin B are expressed in adipose tissue.Microarray analysis showed that adipose tissue expressed activin type I and II receptors and that the expression of activin receptor-like kinase 7 (ALK7) was adipose tissue specific. In obesity discordant siblings from the SOS Sib Pair study, adipose tissue ALK7 expression was higher in lean (n = 90) compared to obese (n = 90) subjects (p = 4 × 10−31). Adipose tissue ALK7 expression correlated with several measures of body fat, carbohydrate metabolism and lipids. In addition, ALK7 and INHBB expression correlated but only in lean subjects and in subjects with normal glucose tolerance.We conclude that activin B may have local effects in adipose tissue and thereby influence obesity and its comorbidities.  相似文献   

15.
16.
17.
18.
Platelet endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion molecule that is highly expressed on the surface of endothelial cells and some hematopoietic cells. Its cytoplasmic domain is encoded by multiple exons, which undergo alternative splicing. Here, we demonstrate that the human PECAM-1 cytoplasmic domain undergoes alternative splicing, generating six different isoforms. RT-PCR cloning and DNA sequence analysis indicated that human tissue and endothelial cells express multiple isoforms of PECAM-1, including the full-length PECAM-1 and five other isoforms, which lack exon 12, 13, 14, or 15 or exons 14 and 15. The full-length PECAM-1 is the predominant isoform detected in human tissue and endothelial cells. This is in contrast to murine endothelium, in which the PECAM-1 isoform lacking exons 14 and 15 is the predominant isoform. The PECAM-1 isoform lacking exon 13 detected in human tissue and endothelial cells is absent in murine endothelium. The expression pattern of PECAM-1 isoforms changes during tube formation of endothelial cells on Matrigel, which may indicate specialized roles for specific isoforms of PECAM-1 during angiogenesis. The data presented here demonstrate that human PECAM-1 undergoes alternative splicing, generating multiple isoforms in vascular beds of various tissues. Therefore, the regulated expression of these isoforms may influence endothelial cell adhesive properties during angiogenesis and/or vasculogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号