首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To probe the role of side chain dynamics in Abeta aggregation, we studied the methyl dynamics of native Abeta40 and Abeta42 by measuring cross relaxation rates with interleaved data collection. The methyl groups in the C-terminus are in general more rigid in Abeta42 than in Abeta40, consistent with previous results from backbone (15)N dynamics. This lends support to the hypothesis that a rigid C-terminus in Abeta42 may serve as an internal aggregation seed. Interestingly, two methyl groups of V18 located in the central hydrophobic cluster are more mobile in Abeta42 than in Abeta40, most likely due to the paucity of V18 intra-molecular interactions in Abeta42. V18 may then be more available for inter-molecular interactions to form Abeta42 aggregates. Thus, the side chain mobility of the central hydrophobic cluster may play an important role in Abeta aggregation and may contribute to the difference in aggregation propensity between Abeta40 and Abeta42.  相似文献   

2.
Aggregation of the 42-mer amyloid β peptide (Aβ42) plays a pivotal role in the pathogenesis of Alzheimer’s disease. Recent investigations suggested the isomerization and/or racemization of Asp at position 1, 7, or 23 to be associated with the pathological role of Aβ42. Our previous study indicated that the turn at positions 22 and 23 of Aβ42 is closely related to its neurotoxicity through the formation of radicals. To clarify the contribution of these modifications at Asp23 to the pathology, three isomerized and/or racemized Aβ42 mutants were prepared. l-isoAsp23- and d-Asp23-Aβ42 showed moderate aggregative ability similar to the wild type. However, d-Asp23-Aβ42 was less neurotoxic than the wild type, while l-isoAsp23-Aβ42 was as toxic as the wild type. In contrast, d-isoAsp23-Aβ42 showed weak aggregative ability without neurotoxicity. These results suggest the isomerization and/or racemization of Asp23 not to be related to the pathogenesis, but to be a consequence of chemical reactions during the long-term deposition of fibrils.  相似文献   

3.
Jia M  Luo L  Liu C 《Biopolymers》2004,73(1):16-26
A new integrated sequence-structure database, called IADE (Integrated ASTRAL-DSSP-EMBL), incorporating matching mRNA sequence, amino acid sequence, and protein secondary structural data, is constructed. It includes 648 protein domains. Based on the IADE database, we studied the relation between RNA stem-loop frequencies and protein secondary structure. It was found that the alpha-helices and beta-strands on proteins tend to be preferably "coded" by mRNA stem region, while the coils on proteins tend to be preferably "coded" by mRNA loop region. These tendencies are more obvious if we observe the structural words (SWs). An SW is defined by a four-amino-acid-fragment that shows the pronounced secondary structural (alpha-helix or beta-strand) propensity. It is demonstrated that the deduced correlation between protein and mRNA structure can hardly be explained as the stochastic fluctuation effect.  相似文献   

4.
5.
Summary The parameters for HN chemical shift calculations of proteins have been determined using data from high-resolution crystal structures of 15 proteins. Employing these chemical shift calculations for HN protons, the observed secondary structure chemical shift trends of HN protons, i.e., upfield shifts on helix formation and downfield shifts on -sheet formation, are discussed. Our calculations suggest that the main reason for the difference in NH chemical shifts in helices and sheets is not an effect from the directly hydrogen-bonded carbonyl, which gives rise to downfield shifts in both cases, but arises from an additional upfield shift predicted in helices and originating in residues i-2 and i-3. The calculations also explain the well-known relationship between amide proton shifts and hydrogen-bond lengths. In addition, the HN chemical shifts of the distorted amphipathic helices of the GCN4 leucine zipper are calculated and used to characterise the solution structure of the helices. By comparing the calculated and experimental shifts, it is shown that in general the agreement is good between residues 15 and 28. The most interesting observation is that in the N-terminal half of the zipper, although both calculated and experimental shifts show clear periodicity, they are no longer in phase. This suggests that for the N-terminal half, in the true average solution structure the period of the helix coil is longer by roughly one residue compared to the NMR structures.  相似文献   

6.
M Bunster  H Cid 《FEBS letters》1984,175(2):267-274
The effects of the quaternary agent meproadifen on ACh-activated channel currents were studied on myoballs cultured from hind limb muscles of neonatal rats. Meproadifen (0.02-0.1 microM) combined with ACh (0.1-0.3 microM) in the patch pipette caused an increase, followed by a decrease, in the frequency of channel openings. At concentrations greater than 0.2 microM the initial phase was not detected and a rapid and marked reduction in the opening frequency was observed. Meproadifen (up to 2.5 microM) produced no change in the duration or conductance of the open state of ACh-activated channels. In addition, this agent induced the appearance of events with a marked increase in the 'noise' during the opening phase. The lack of effect under inside-out patch conditions suggested that meproadifen binds to a site located at the external portion of the nicotinic macromolecule and has no access to it through the cell membrane. This study indicated that non-competitive antagonists such as meproadifen can facilitate receptor activation and desensitization.  相似文献   

7.
Summary Antibody heavy chain variable domains (VH) lacking their light chain domain (VL) partner are prime candidates for the design of minimum-size immunoreagents. To obtain structural information about isolated VH domains, a human VH was labelled with 15N or doubly labelled with both 15N and 13C and was studied by heteronuclear nuclear magnetic resonance spectroscopy. Most (90%) of the 1H and 15N main-chain signals were assigned through two-dimensional TOCSY and NOESY experiments on the unlabelled VH and three-dimensional heteronuclear multiple quantum correlation TOCSY and NOESY experiments on the 15N-labelled VH. Four short stretches of the polypeptide chain could only be assigned on the basis of three-dimensional HNCA and HN(CO)CA experiments on the 13C-/15N-labelled protein. Long-range interstrand backbone NOEs suggest the presence of two adjacent -sheets formed by altogether nine antiparallel -strands. 3JH NHC coupling constants and the location of slowly exchanging backbone amides support this interpretation. The secondary structure of the isolated VH is identical to that of heavy chain variable domains in intact antibodies, where VH domains are packed against a VL domain. The backbone assignments of the VH made it possible to locate its Protein A binding site. Chemical shift movements after complexing with the IgG binding fragment of Protein A indicate binding through one of the two -sheets of the VH. This -sheet is solvent exposed in intact antibodies. The Protein A binding site obviously differs from that on the Fc portion of immunoglobulins and is unique to members of the human VHIII gene subgroup.Abbreviations CDR complementarity determining region - CHAPS [(cholamidopropyl)-dimethylammonio]-1-propanesulfonate - DQF-COSY double-quantum-filtered correlated spectroscopy - Fab antigen binding antibody fragment - Fc crystallisable antibody fragment - Fv heterodimer of VH and VL - H1 (2, 3) hypervariable loop 1 (2, 3) - IgG immunoglobulin G - NOE nuclear Overhauser effect - NOESY nuclear Overhauser enhancement spectroscopy - HMQC heteronuclear multiple quantum correlation spectroscopy - HSQC heteronuclear single quantum correlation spectroscopy - scFv single chain Fv - TOCSY total correlation spectroscopy - TPPI time-proportional phase incrementation - VH antibody heavy chain variable region - VL antibody light chain variable region. Mutants are denoted by the wild-type amino acid (one-letter code), follwed by the residue number and the new amino acid  相似文献   

8.
Peptides of alternating charge and hydrophobic amino acids have a tendency to adopt unusually stable beta-sheet structures that can form insoluble macroscopic aggregates under physiological conditions. In this study, analogues of a well-known self-assembling peptide, characterized by the same polar/nonpolar periodicity but with different residues, were designed to study the relationship between sequence, conformation in solution and film-forming capacity in saline solution. Peptide conformation, evaluated by circular dichroism, correlated with film forming capacity observed by inverted optical microscopy after addition of saline solution and subsequent drying. We found that polar/nonpolar periodicity of several analogues is not criterion enough to induce beta-sheet and thus film formation and that conformations different from beta-sheet also allow self-assemblage. Furthermore, addition of the short adhesive sequence RGD to a known self-assembling sequence was shown to not prevent the self-assembling process. This finding might prove useful for the design of biomimetic scaffolds. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 906-915, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

9.
In recent years, the evaluation of the structural properties of food has become of crucial importance in the understanding of food-related disorders. One of the most exciting systems is gliadin, a protein in wheat gluten, that plays a protagonist role in gluten-related disorders with a worldwide prevalence of 5%, including autoimmune celiac disease (CeD) (1%) and non-celiac wheat sensitivity (0.5–13%). It is accepted that gliadin is not fully digested by humans, producing large peptides that reach the gut mucosa. The gliadin peptides cross the lamina propria eliciting different immune responses in susceptible patients. Many clinical and biomedical efforts aim to diagnose and understand gluten-related disorders; meanwhile, the early stages of the inflammatory events remain elusive. Interestingly, although the primary sequence of many gliadin peptides is well known, it was only recently revealed the self-assembly capability of two pathogenic gliadin fragments and their connection to the early stage of diseases. This review is dedicated to the most relevant biophysical characterization of the complex gliadin digest and the two most studied gliadin fragments, the immunodominant 33-mer peptide and the toxic p31-43 in connection with inflammation and innate immune response. Here, we want to emphasize that combining different biophysical methods with cellular and in vivo models is of key importance to get an integrative understanding of a complex biological problem, as discussed here.  相似文献   

10.
The recognition of protein folds is an important step in the prediction of protein structure and function. Recently, an increasing number of researchers have sought to improve the methods for protein fold recognition. Following the construction of a dataset consisting of 27 protein fold classes by Ding and Dubchak in 2001, prediction algorithms, parameters and the construction of new datasets have improved for the prediction of protein folds. In this study, we reorganized a dataset consisting of 76-fold classes constructed by Liu et al. and used the values of the increment of diversity, average chemical shifts of secondary structure elements and secondary structure motifs as feature parameters in the recognition of multi-class protein folds. With the combined feature vector as the input parameter for the Random Forests algorithm and ensemble classification strategy, we propose a novel method to identify the 76 protein fold classes. The overall accuracy of the test dataset using an independent test was 66.69%; when the training and test sets were combined, with 5-fold cross-validation, the overall accuracy was 73.43%. This method was further used to predict the test dataset and the corresponding structural classification of the first 27-protein fold class dataset, resulting in overall accuracies of 79.66% and 93.40%, respectively. Moreover, when the training set and test sets were combined, the accuracy using 5-fold cross-validation was 81.21%. Additionally, this approach resulted in improved prediction results using the 27-protein fold class dataset constructed by Ding and Dubchak.  相似文献   

11.
Summary Essentially complete backbone and side-chain 1H, 15N and 13C resonance assignments for the 185-aminoacid cytokine interleukin-6 (IL-6) are presented. NMR experiments were performed on uniformly [15N]-and [15N, 13C]-labeled recombinant human IL-6 (rIL-6) using a variety of heteronuclear NMR experiments. A combination of 13C-chemical shift, amide hydrogen-bond exchange, and 15N-edited NOESY data allowed for analysis of the secondary structure of IL-6. The observed secondary structure of IL-6 is composed of loop regions connecting five -helices, four of which are consistent in their length and disposition with the four-helix bundle motif present in other related cytokines and previously postulated for IL-6. In addition, the topology of the overall fold was found to be consistent with a left-handed up-up-down-down four-helix bundle based on a number of long-range interhelical NOEs. The results presented here provide deeper insight into structure-function relationships among members of the four-helix bundle family of proteins.  相似文献   

12.
Constructing a model of a query protein based on its alignment to a homolog with experimentally determined spatial structure (the template) is still the most reliable approach to structure prediction. Alignment errors are the main bottleneck for homology modeling when the query is distantly related to the template. Alignment methods often misalign secondary structural elements by a few residues. Therefore, better alignment solutions can be found within a limited set of local shifts of secondary structures. We present a refinement method to improve pairwise sequence alignments by evaluating alignment variants generated by local shifts of template‐defined secondary structures. Our method SFESA is based on a novel scoring function that combines the profile‐based sequence score and the structure score derived from residue contacts in a template. Such a combined score frequently selects a better alignment variant among a set of candidate alignments generated by local shifts and leads to overall increase in alignment accuracy. Evaluation of several benchmarks shows that our refinement method significantly improves alignments made by automatic methods such as PROMALS, HHpred and CNFpred. The web server is available at http://prodata.swmed.edu/sfesa . Proteins 2015; 83:411–427. © 2014 Wiley Periodicals, Inc.  相似文献   

13.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

14.
Summary Essentially complete assignments have been obtained for the1H and protonated13C NMR spectra of the zinc finger peptide Xfin-31 in the presence and absence of zinc. The patterns observed for the1H and13C chemical shifts of the peptide in the presence of zinc, relative to the shifts in the absence of zinc, reflect the zinc-mediated folding of the unstructured peptide into a compact globular structure with distinct elements of secondary structure. Chemical shifts calculated from the 3D solution structure of the peptide in the presence of zinc and the observed shifts agree to within ca. 0.2 and 0.6 ppm for the backbone CaH and NH protons, respectively. In addition, homologous zinc finger proteins exhibit similar correlations between their1H chemical shifts and secondary structure.  相似文献   

15.
Summary An empirical correlation between the peptide 15N chemical shift, 15Ni, and the backbone torsion angles i, i–1 is reported. By using two-dimensional shielding surfaces (i1–1), it is possible in many cases to make reasonably accurate predictions of 15N chemical shifts for a given structure. On average, the rms error between experiment and prediction is about 3.5 ppm. Results for threonine, valine and isoleucine are worse (4.8 ppm), due presumably to 1-distribution/-gauche effects. The rms errors for the other amino acids are 3 ppm, for a typical maximal chemical shift range of 15–20 ppm. Thus, there is a significant correlation between 15N chemical shift and secondary structure.  相似文献   

16.
Opuntia ficus-indica (L.) Mill. (OFI), also known as Indian fig Opuntia or prickly pear, is a member of the family Cactaceae that produces edible, nutritionally rich sweet fruits. It has been traditionally used to treat several health disorders and is considered to possess various therapeutic properties. In this work, we have characterized 37 secondary metabolites using HPLC-MS/MS, identified the polysaccharide from the fruits and cladodes pulp, and estimated the neuroprotective activity. All tested extracts exhibited substantial antioxidant activities in-vitro and neuroprotective potential in AlCl3 induced Alzheimer’s condition. Administration of OFI extracts attenuated AlCl3 induced learning and memory impairment as confirmed from passive avoidance test and counteracted the oxidative stress as manifested from decreasein the elevated MDA level, increased TAC, GSH, SOD and CAT levels. OFI extracts significantly decreased the elevated brain levels of proinflammatory cytokines (NF-κβ and TNF-α), increased anti-inflammatory cytokine (IL-10), and monoamine neurotransmitters (NE, DA, 5-HT) as compared to positive control group. The extracts showed a significant decrease in acetylcholinesterase level (AChE) as compared with AlCl3. Furthermore, molecular docking was performed to investigate the ability of the major constituents of OFI extracts to interact with acetylcholinesterase (AChE) and serotonin transporter (SERT). Among the tested extracts, cladodes contain highest phenolic content and exhibited the highest antioxidant, anti-inflammatory and neuroprotective activities, which could be attributed to presence of several polyphenols, which could function as AChE and SERT inhibitors. Opuntia ficus-indica might be promising candidate for treating Alzheimer disease, which makes it a subject for more detailed studies.  相似文献   

17.
Bromoacetaldehyde (BAA) was used to study the secondary structure of DNA in lambda-phage particles. It was determined that about 1% of the adenines in the intraphage lambda-DNA reacts readily with BAA, thus, they are placed in DNA sites with disturbed complementary interactions. These adenines are close to the tryptophan residues of the phage protein. Fluorescence emission of epsilon A in the intraphage DNA is dramatically quenched. This, apparently, indicates the interaction between epsilon A and Trp- and/or Tyr- and/or Met-residues of phage protein.  相似文献   

18.
19.
Vries JK  Liu X  Bahar I 《Proteins》2007,68(4):830-838
An n-gram pattern (NP{n,m}) in a protein sequence is a set of n residues and m wildcards in a window of size n+m. Each window of n+m amino acids is associated with a collection of NP{n,m} patterns based on the combinatorics of n+m objects taken m at a time. NP{n,m} patterns that are shared between sequences reflect evolutionary relationships. Recently the authors developed an alignment-independent protein classification algorithm based on shared NP{4,2} patterns that compared favorably to PSI-BLAST. Theoretically, NP{4,2} patterns should also reflect secondary structure propensity since they contain all possible n-grams for 1 < or = n < or = 4 and a window of 6 residues is wide enough to capture periodicities in the 2 < or = n < or = 5 range. This sparked interest in differentiating the information content in NP{4,2} patterns related to evolution from the content related to local propensity. The probability of alpha-, beta-, and coil components was determined for every NP{4,2} pattern over all the chains in the Protein Data Bank (PDB). An algorithm exclusively based on the Z-values of these distributions was developed, which accurately predicted 71-76% of alpha-helical segments and 62-67% of beta-sheets in rigorous jackknife tests. This provided evidence for the strong correlation between NP{4,2} patterns and secondary structure. By grouping PDB chains into subsets with increasing levels of sequence identity, it was also possible to separate the evolutionary and local propensity contributions to the classification process. The results showed that information derived from evolutionary relationships was more important for beta-sheet prediction than alpha-helix prediction.  相似文献   

20.
Fusogenic peptides belong to a class of helical amphipathic peptides characterized by a hydrophobicity gradient along the long helical axis. According to the prevailing theory regarding the mechanism of action of fusogenic peptides, this hydrophobicity gradient causes the tilted insertion of the peptides in membranes, thus destabilizing the lipid core and, thereby, enhancing membrane fusion. To assess the role of the hydrophobicity gradient upon the fusogenic activity, two of these fusogenic peptides and several variants were synthesized. The LCAT-(57-70) peptide, which is part of the sequence of the lipolytic enzyme lecithin cholesterol acyltransferase, forms stable beta-sheets in lipids, while the apolipoprotein A-II (53-70) peptide remains predominantly helical in membranes. The variant peptides were designed through amino acid permutations, to be either parallel, perpendicular, or to retain an oblique orientation relative to the lipid-water interface. Peptide-induced vesicle fusion was monitored by lipid-mixing experiments, using fluorescent probes, the extent of peptide-lipid association, the conformation of lipid-associated peptides and their orientation in lipids, were studied by Fourier Transformed Infrared Spectroscopy. A comparison of the properties of the wild-type and variant peptides shows that the hydrophobicity gradient, which determines the orientation of helical peptides in lipids and their fusogenic activity, further influences the secondary structure and lipid binding capacity of these peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号