首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conservation of synteny of mammalian imprinted genes between chicken and human suggested that highly conserved gene clusters were selected long before these genes were recruited for genomic imprinting in mammals. Here we have applied in silico mapping of orthologous genes in pipid frog, zebrafish, spotted green and Japanese pufferfish to show considerable conservation of synteny in lower vertebrates. More than 400 million years ago in a common ancestor of teleost fish and tetrapods, 'preimprinted' chromosome regions homologous to human 6q25, 7q21, 7q32, 11p15, and 15q11-->q12 already contained most present-day mammalian imprinted genes. Interestingly, some imprinted gene orthologues which are isolated from imprinted clusters in mouse and human could be linked to preimprinted regions in lower vertebrates, indicating that separation occurred during mammalian evolution. On the contrary, newly arisen genes by segmental duplication in the mammalian lineage, i.e. SNRPN and FRAT3, were transposed or translocated to imprinted clusters and recruited for parent-specific activity. By analysis of currently available sequences of non-mammalian vertebrates, the imprinted gene clusters homologous to human chromosomes 14q32 and 19q12 are only poorly conserved in chicken, frog, and fish and, therefore, may not have evolved from ancestral preimprinted gene arrays. Evidently, evolution of imprinted gene clusters is an ongoing and dynamic process in mammals. In general, imprinted gene orthologues do not show a higher degree of synteny conservation in vertebrates than non-imprinted genes interspersed with or adjacent to an imprinted cluster.  相似文献   

2.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

3.
Hox genes,responsible for regional specification along the anteroposterior axis in embryogenesis,are found as clusters in most eumetazoan genomes sequenced to date.Invertebrates possess a single Hox gene cluster with some exceptions of secondary cluster breakages, while osteichthyans (bony vertebrates) have multiple Hox clusters. In tetrapods, four Hox clusters,derived from the so-called two-round whole genome duplications (2R-WGDs),are observed.Overall,the number of Hox gene clusters has been regarded as a reliable marker of ploidy levels in animal genomes. In fact, this scheme also fits the situations in teleost fishes that experienced an additional WGD. In this review, I focus on cyclostomes and cartilaginous fishes as lineages that would fill the gap between invertebrates and osteichthyans.A recent study highlighted a possible loss of the HoxC cluster in the galeomorph shark lineage, while other aspects of cartilaginous fish Hox clusters usually mark their conserved nature. In contrast,existing resources suggest that the cyclostomes exhibit a different mode of Hox cluster organization.For this group of species,whose genomes could have differently responded to the 2R-WGDs from jawed vertebrates,therefore the number of Hox clusters may not serve as a good indicator of their ploidy level.  相似文献   

4.
Large-scale gene amplifications may have facilitated the evolution of morphological innovations that accompanied the origin of vertebrates. This hypothesis predicts that the genomes of extant jawless fish, scions of deeply branching vertebrate lineages, should bear a record of these events. Previous work suggests that nonvertebrate chordates have a single Hox cluster, but that gnathostome vertebrates have four or more Hox clusters. Did the duplication events that produced multiple vertebrate Hox clusters occur before or after the divergence of agnathan and gnathostome lineages? Can investigation of lamprey Hox clusters illuminate the origins of the four gnathostome Hox clusters? To approach these questions, we cloned and sequenced 13 Hox cluster genes from cDNA and genomic libraries in the lamprey, Petromyzon marinus. The results suggest that the lamprey has at least four Hox clusters and support the model that gnathostome Hox clusters arose by a two-round-no-cluster-loss mechanism, with tree topology [(AB)(CD)]. A three-round model, however, is not rigorously excluded by the data and, for this model, the tree topologies [(D(C(AB))] and [(C(D(AB))] are most parsimonious. Gene phylogenies suggest that at least one Hox cluster duplication occurred in the lamprey lineage after it diverged from the gnathostome lineage. The results argue against two or more rounds of duplication before the divergence of agnathan and gnathostome vertebrates. If Hox clusters were duplicated in whole-genome duplication events, then these data suggest that, at most, one whole genome duplication occurred before the evolution of vertebrate developmental innovations.  相似文献   

5.
MicroRNAs (miRNAs) are a class of small non-coding RNAs that can play important regulatory roles in many important biological processes. Although clustering patterns of miRNA clusters have been uncovered in animals, the origin and evolution of miRNA clusters in vertebrates are still poorly understood. Here, we performed comparative genomic analyses to construct 51 sets of orthologous miRNA clusters (SOMCs) across seven test vertebrate species, a collection of miRNA clusters from two or more species that are likely to have evolved from a common ancestral miRNA cluster, and used these to systematically examine the evolutionary characteristics and patterns of miRNA clusters in vertebrates. We found that miRNA clusters are continuously generated, and most of them tend to be conserved and maintained in vertebrate genomes, although some adaptive gains and losses of miRNA cluster have occurred during evolution. Furthermore, miRNA clusters appeared relatively early in the evolutionary history might suffer from more complicated adaptive gain-and-loss than those young miRNA clusters. Detailed analysis showed that genomic duplication events of ancestral miRNAs or miRNA clusters are likely to be major driving force and apparently contribute to origin and evolution of miRNA clusters. Comparison of conserved with lineage-specific miRNA clusters revealed that the contribution of duplication events for the formation of miRNA cluster appears to be more important for conserved miRNA clusters than lineage-specific. Our study provides novel insights for further exploring the origins and evolution of miRNA clusters in vertebrates at a genome scale.  相似文献   

6.
A degenerate ParaHox gene cluster in a degenerate vertebrate   总被引:1,自引:0,他引:1  
The ParaHox genes consist of 3 homeobox gene families, Gsx, Xlox, and Cdx, all of which have fundamental roles in development. Xlox (known as IPF1 or PDX1 in vertebrates), for example, is crucial for development of the vertebrate pancreas and is also involved in regulation of insulin expression. The invertebrate amphioxus has a gene cluster containing one gene from each of the gene families, whereas in all vertebrates examined to date there are additional copies resultant from ParaHox gene cluster duplications at the base of the vertebrate lineage. Extant vertebrates basal to bony and cartilaginous fish are central to the question of when and how these multiple genes arose in the vertebrate genome. Here, we report the mapping of a ParaHox gene cluster in 2 species of hagfishes. Unexpectedly, these basal vertebrates have lost a functional Xlox gene from this cluster, unlike every other vertebrate examined to date. Furthermore, our phylogenetic analyses suggest that hagfishes may have diverged from the vertebrate lineage before the duplications, which created the multiple ParaHox clusters in jawed vertebrates.  相似文献   

7.
In mammals, a total of six iroquois (Irx) genes exist, which are organized into two clusters. Here we report on the organization of all iroquois genes present in fish, using zebrafish (Danio rerio) and pufferfish (Fugu rubripes and Tetraodon nigroviridis) as examples. A total of 10 Irx genes were found in pufferfish, and 11 in zebrafish; all but one of these genes are organized into clusters (four clusters plus one isolated gene locus). The extra fish clusters result from chromosome duplication in the fish lineage, after its divergence from tetrapod vertebrates. Two of the four fish clusters are highly conserved to the ones in mammals, with regard to similarity of genes and cluster architecture. Irx genes within the other two clusters have diverged in sequence and cluster organization, suggesting functional divergence. These results will allow us to use the zebrafish system for functional and comparative studies of iroquois genes in vertebrate development.Electronic Supplementary Material Supplementary material is available in the online version of this article at Edited by D. Tautz  相似文献   

8.
9.
The clustering propensity of microRNA genes is a common biological phenomenon in various animal and plant species. To gain novel insight into genomic organization and potential functional heterogeneities of miRNA clusters in vertebrates from a genome scale, we used large scale data and presented a comprehensive analysis to examine various features of genomic organization of miRNA clusters across seven vertebrates by a combination of comparative genomics and bioinformatics approaches. The results of pair-wise distance analysis of same-strand consecutive miRNAs suggested that the fractions of the miRNA gene pairs are higher at relatively short pair-wise distances than those of protein-coding genes and other non-coding RNA genes. Especially relatively small number of miRNAs is more clustered at very short pair-wise distances than expected at random. We further observed significant difference between real miRNA clusters and randomly organized clusters for different aspects, including higher overlap of target genes, fewer seed types and significant enrichment in diseases. However, the extent of these features of clustered miRNAs has a different tendency and largely depends on inter-miRNA distances because of diverse clustering propensity of miRNAs in vertebrates, suggesting that this cooperated function or cooperative effects between miRNAs in clusters perhaps be affected by inter-miRNA distances.  相似文献   

10.
Changes in number and the genomic organization of Hox genes have played an important role in metazoan body-plan evolution. They make cluster(s), and in vertebrates, each cluster contains different number of Hox genes that have been classified into 13 groups. There are 39 Hox genes in four clusters on different chromosomes in the mammalian genome. In the fish, while 31 Hox genes in four clusters have been identified in pufferfish Fugu rubripes, 47 Hox genes in seven clusters exist in the zebrafish Danio rerio. To estimate the evolutionary origin of Hox organization in ray-finned fishes, we searched for Hox genes in the medaka fish Oryzias latipes, with a taxon thought to be widely separated from those of pufferfish and zebrafish. We synthesized various mixed oligonucleotides that can work as group-specific primers for PCR, then cloned and sequenced amplified fragments. Numbers of Hox genes identified in the present study were 2 for group 1, 2 for group 2, 1 for group 3, 3 for group 4, 6 for groups 5-7, 2 for group 8, 4 for group 9, 3 for group 10, 1 for group 12, and 3 for group 13. The primers specific for group 11 did not function in this study. Thus, at least 27 Hox genes are present in medaka genome, suggesting that the Hox gene complexity of the medaka genome is similar to that of the pufferfish rather than the zebrafish.  相似文献   

11.
12.
13.
硬骨鱼类雄激素受体研究进展   总被引:1,自引:0,他引:1  
在脊椎动物中,雄激素的生理作用主要是通过核雄激素受体(nuclear androgen receptor,nAR)介导的,这种转录因子属于核受体超家族成员.从哺乳动物到硬骨鱼类,均存在nAR.与高等脊椎动物不同的是,由于基因倍增等原因,部分硬骨鱼类nAR存在2种亚型.它们在鱼类胚胎发育和性腺发育过程中表现为不同的组织分...  相似文献   

14.
15.
Jelen N  Ule J  Zivin M  Darnell RB 《PLoS genetics》2007,3(10):1838-1847
A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs.  相似文献   

16.
17.
Hox genes form clusters. Invertebrates and Amphioxus have only one hox cluster, but in vertebrates, they are multiple, i.e., four in the basal teleost fish Polyodon and tetrapods (HoxA, B, C, D), but seven or eight in common teleosts. We earlier completely sequenced the entire hox gene loci in medaka fish, showing a total of 46 hox genes to be encoded in seven clusters (hoxAa, Ab, Ba, Bb, Ca, Da, Db). Among them, hoxAa, hoxAb and hoxDa clusters are presumed to be important for fin-to-limb evolution because of their key role in forelimb and pectoral fin development. In the present study, we compared genome organization and nucleotide sequences of the hoxAa and hoxAb clusters to these of tetrapod HoxA clusters, and found greater similarity in hoxAa case. We then analyzed expression of Abd-B family genes in the clusters. In the trunk, those from the hoxAa cluster, i.e., hoxA9a, hoxA10a, hoxA11a and hoxA13a, were expressed in a manner keeping the colinearity rule of the hox expression as those of tetrapods, while those from the hoxAb cluster, i.e., hoxA9b, hoxA10b, hoxA11b and hoxA13b, were not. In the pectoral fins, the hoxAa cluster was expressed in split domains and did not obey the rule. By contrast, those from the hoxAb and hoxDa clusters were expressed in a manner keeping the rule, i.e., an ancestral pattern similar to those of tetrapods. It is plausible that this differential expression of the two clusters is caused by changes occurred in global control regions after cluster duplications.  相似文献   

18.
An understanding of the origin of different body plans requires knowledge of how the genes and genetic pathways that control embryonic development have evolved. The Hox genes provide an appealing starting point for such studies because they play a well-understood causal role in the regionalization of the body plan of all bilaterally symmetric animals. Vertebrate evolution has been characterized by gene, and possibly genome, duplication events, which are believed to have provided raw genetic material for selection to act upon. It has recently been established that the Hox gene organization of ray-finned fishes, such as the zebrafish, differs dramatically from that of their lobe-finned relatives, a group that includes humans and all the other widely used vertebrate model systems. This unusual Hox gene organization of zebrafish is the result of a duplication event within the ray-finned fish lineage. Thus, teleosts, such as zebrafish, have more Hox genes arrayed over more clusters (or "complexes") than do tetrapod vertebrates. Here, I review our understanding of Hox cluster architecture in different vertebrates and consider the implications of gene duplication for Hox gene regulation and function and the evolution of different body plans.  相似文献   

19.
The sea lamprey Petromyzon marinus is among the most primitive of extant vertebrates. We are interested in the organization of its Hox gene clusters, because, as a close relative of the gnathostomes, this information would help to infer Hox cluster organization at the base of the gnathostome radiation. We have partially mapped the P. marinus Hox clusters using phage, cosmid, and P1 artificial chromosome libraries. Complete homeobox sequences were obtained for the 22 Hox genes recovered in the genomic library screens and analyzed for cognate group identity. We estimate that the clusters are somewhat larger than those of mammals (roughly 140 kbp vs. 105 kbp) but much smaller than the single Hox cluster of the cephalochordate amphioxus (at more than 260 kb). We never obtained more than three genes from any single cognate group from the genomic library screens, although it is unlikely that our screen was exhaustive, and therefore conclude that P. marinus has a total of either three or four Hox clusters. We also identify four highly conserved non-coding sequence motifs shared with higher vertebrates in a genomic comparison of Hox 10 genes.  相似文献   

20.
The neurohypophysial peptides are vasopressor or depressor inaction depending on the species. Isotocin, mesotocin and oxytocinconstrict the branchial vessels in fish and induce a reflexvasodilation in the systemic vasculature. The vasodilation haspersisted in some higher vertebrates and is particularly prominentin the snakes and birds where vasotocin and arginine vasopressinalso are vasodepressor but are much less potent than mesotocinand oxytocin. In other vertebrates including fish, vasotocinand vasopressin are pressor and exert their effects mainly onthe peripheral resistance. The newt, toads and soft-shell turtlegave pressor responses to all neurohypophysial peptides, withvasotocin showing the highest potency. The frogs, big-headedturtle and lizards were intermediate with vasotocin being pressor,mesotocin being pressor and oxytocin exhibiting a dual effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号