首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
NF-kappaB activation is reciprocally regulated by RelA/p65 acetylation and deacetylation, which are mediated by histone acetyltransferases (HATs) and deacetylases (HDACs). Here we demonstrate that in leukemia cells, NF-kappaB activation by the HDAC inhibitors (HDACIs) MS-275 and suberoylanilide hydroxamic acid was associated with hyperacetylation and nuclear translocation of RelA/p65. The latter events, as well as the association of RelA/p65 with IkappaBalpha, were strikingly diminished by either coadministration of the IkappaBalpha phosphorylation inhibitor Bay 11-7082 (Bay) or transfection with an IkappaBalpha superrepressor. Inhibition of NF-kappaB by pharmacological inhibitors or genetic strategies markedly potentiated apoptosis induced by HDACIs, and this was accompanied by enhanced reactive oxygen species (ROS) generation, downregulation of Mn-superoxide dismutase and XIAP, and c-Jun N-terminal kinase 1 (JNK1) activation. Conversely, N-acetyl L-cysteine blocked apoptosis induced by Bay/HDACIs by abrogating ROS generation. Inhibition of JNK1 activation attenuated Bay/HDACI lethality without affecting NF-kappaB inactivation and ROS generation. Finally, XIAP overexpression dramatically protected cells against the Bay/HDACI regimen but failed to prevent ROS production and JNK1 activation. Together, these data suggest that HDACIs promote the accumulation of acetylated RelA/p65 in the nucleus, leading to NF-kappaB activation. Moreover, interference with these events by either pharmacological or genetic means leads to a dramatic increase in HDACI-mediated lethality through enhanced oxidative damage, downregulation of NF-kappaB-dependent antiapoptotic proteins, and stress-related JNK1 activation.  相似文献   

3.
4.
5.
Inhibition of NF-kappaB activation increases susceptibility to tumor necrosis factor (TNF)alpha-induced cell death, concurrent with caspases and prolonged c-Jun N-terminal kinase (JNK) activation, and reactive oxygen species (ROS) accumulation. However, the detailed mechanisms are unclear. Here we show that cellular FLICE-inhibitory protein (c-FLIP) is rapidly lost in NF-kappaB activation-deficient, but not wild-type fibroblasts upon TNFalpha stimulation, indicating that NF-kappaB normally maintains the cellular levels of c-FLIP. The ectopic expression of the long form of c-FLIP (c-FLIPL) inhibits TNFalpha-induced prolonged JNK activation and ROS accumulation in NF-kappaB activation-deficient fibroblasts. Conversely, TNFalpha induces prolonged JNK activation and ROS accumulation in c-Flip-/- fibroblasts. Moreover, c-FLIPL directly interacts with a JNK activator, MAP kinase kinase (MKK)7, in a TNFalpha-dependent manner and inhibits the interactions of MKK7 with MAP/ERK kinase kinase 1, apoptosis-signal-regulating kinase 1, and TGFbeta-activated kinase 1. This stimuli-dependent interaction of c-FLIPL with MKK7 might selectively suppress the prolonged phase of JNK activation. Taken that ROS promote JNK activation and activation of the JNK pathway may promote ROS accumulation, c-FLIPL might block this positive feedback loop, thereby suppressing ROS accumulation.  相似文献   

6.
Active NF-kappaB renders malignant hepatocytes refractory to the growth inhibitory and pro-apoptotic properties of transforming growth factorbeta1 (TGF-beta1). NF-kappaB counteracts TGF-beta1-induced apoptosis through up-regulation of downstream target genes, such as XIAP and Bcl-X(L), which in turn inhibit the intrinsic pathway of apoptosis. In addition, induction of NF-kappaB by TGF-beta1 inhibits JNK signaling, thereby attenuating TGF-beta1-induced cell death of normal hepatocytes. However, the mechanism involved in the negative cross-talk between the NF-kappaB and JNK pathways during TGF-beta1 signaling has not been determined. In this study, we have identified the XIAP gene as one of the critical mediators of NF-kappaB-mediated suppression of JNK signaling. We show that NF-kappaB plays a role in the up-regulation of XIAP gene expression in response to TGF-beta1 treatment and forms a TGF-beta1-inducible complex with TAK1. Furthermore, we show that the RING domain of XIAP mediates TAK1 polyubiquitination, which then targets this molecule for proteosomal degradation. Down-regulation of TAK1 protein expression inhibits TGF-beta1-mediated activation of JNK and apoptosis. Conversely, silencing of XIAP promotes persistent JNK activation and potentiates TGF-beta1-induced apoptosis. Collectively, our findings identify a novel mechanism for the regulation of JNK activity by NF-kappaB during TGF-beta1 signaling and raise the possibility that pharmacologic inhibition of the NF-kappaB/XIAP signaling pathway might selectively abolish the pro-oncogenic activity of TGF-beta1 in advanced hepatocellular carcinomas (HCCs) without affecting the pro-apoptotic effects of TGF-beta1 involved in normal liver homeostasis.  相似文献   

7.
Role of JNK activation in apoptosis: A double-edged sword   总被引:38,自引:0,他引:38  
Liu J  Lin A 《Cell research》2005,15(1):36-42
JNK is a key regulator of many cellular events, including programmed cell death (apoptosis). In the absence of NF-κB activation, prolonged JNK activation contributes to TNF-α induced apoptosis. JNK is also essential for UV induced apoptosis. However, recent studies reveal that JNK can suppress apoptosis in IL-3-dependent hematopoietic cells via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Thus, JNK has pro- or antiapoptotic functions, depending on cell type, nature of the death stimulus, duration of its activation and the activity of other signaling pathways.  相似文献   

8.
9.
Numerous studies have recently focused on the anticarcinogenic, antimutagenic, or chemopreventive activities of the main pungent component of red pepper, capsaicin (N-vanillyl-8-methyl-1-nonenamide). We have previously shown that, in the androgen-independent prostate cancer PC-3 cells, capsaicin inhibits cell growth and induces apoptosis through reactive oxygen species (ROS) generation [Apoptosis 11 (2006) 89–99]. In the present study, we investigated the signaling pathways involved in the antiproliferative effect of capsaicin. Here, we report that capsaicin apoptotic effect was mediated by ceramide generation which occurred by sphingomyelin hydrolysis. Using siRNA, we demonstrated that N-SMase expression is required for the effect of capsaicin on prostate cell viability. We then investigated the role of MAP kinase cascades, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in the antiproliferative effect of capsaicin, and we confirmed that capsaicin could activate ERK and JNK but not p38 MAPK. Pharmacological inhibition of JNK kinase, as well as inhibition of ROS by the reducing agent N-acetylcysteine, prevented ceramide accumulation and capsaicin-induced cell death. However, inhibition of ceramide accumulation by the SMase inhibitor D609 did not modify JNK activation. These data reveal JNK as an upstream regulator of ceramide production. Capsaicin-promoted activation of ERK was prevented with all the inhibitors tested. We conclude that capsaicin induces apoptosis in PC-3 cells via ROS generation, JNK activation, ceramide accumulation, and second, ERK activation.  相似文献   

10.
The effects of hepatitis C virus (HCV) proteins on anti-Fas (CD95/APO-1) antibody- and tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis in different human cell lines were investigated by magnetic concentration of cells which transiently produced the exogenous protein. HepG2 cells, which produced whole HCV proteins, became resistant to anti-Fas-induced apoptotic cell death. Furthermore, the core protein among HCV proteins had a key role in protecting the various cells from apoptosis mediated by not only anti-Fas but also TNF-alpha. We also found that the core functioned in the activation of nuclear factor kappaB (NF-kappaB) in all cells examined. Deletion analysis of the core revealed that the region required for NF-kappaB activation was closely correlated with that for its antiapoptotic function. In addition, we revealed in some cases that the antiapoptotic effect of the core was restrained by coproduction of the inhibitor of NF-kappaB, IkappaB-alpha protein. These results demonstrated that the core inhibits Fas- and TNF-alpha-mediated apoptotic cell death via a mechanism dependent on the activation of NF-kappaB in particular cell lines.  相似文献   

11.
Chlamydia trachomatis, an obligate intracellular bacterial species, is known to inhibit host cell apoptosis. However, the chlamydial antiapoptotic mechanism is still not clear. Because NF-kappaB activation is antiapoptotic, we tested the potential role of NF-kappaB activation in chlamydial antiapoptotic activity in the current study. First, no obvious NF-kappaB activation was detected in the chlamydia-infected cells when these cells were resistant to apoptosis induced via either the intrinsic or extrinsic apoptosis pathways. Second, inhibition of NF-kappaB activation with pharmacologic reagents failed to block the chlamydial antiapoptotic activity. Finally, NF-kappaB p65 gene deletion did not prevent chlamydia from inhibiting host cell apoptosis. These observations together have demonstrated that NF-kappaB activation is not required for the chlamydial antiapoptotic activity.  相似文献   

12.
Chang L  Kamata H  Solinas G  Luo JL  Maeda S  Venuprasad K  Liu YC  Karin M 《Cell》2006,124(3):601-613
The proinflammatory cytokine tumor necrosis factor (TNF) alpha signals both cell survival and death. The biological outcome of TNFalpha treatment is determined by the balance between NF-kappaB and Jun kinase (JNK) signaling; NF-kappaB promotes survival, whereas JNK enhances cell death. Critically, identity of a JNK substrate that promotes TNFalpha-induced apoptosis has been outstanding. Here we show that TNFalpha-mediated JNK activation accelerates turnover of the NF-kappaB-induced antiapoptotic protein c-FLIP, an inhibitor of caspase-8. This is not due to direct c-FLIP phosphorylation but depends on JNK-mediated phosphorylation and activation of the E3 ubiquitin ligase Itch, which specifically ubiquitinates c-FLIP and induces its proteasomal degradation. JNK1 or Itch deficiency or treatment with a JNK inhibitor renders mice resistant in three distinct models of TNFalpha-induced acute liver failure, and cells from these mice do not display inducible c-FLIP(L) ubiquitination and degradation. Thus, JNK antagonizes NF-kappaB during TNFalpha signaling by promoting the proteasomal elimination of c-FLIP(L).  相似文献   

13.
14.
15.
16.
Repression of activation of c-Jun N-terminal kinase (JNK) participates in the anti-apoptotic effect of nuclear factor-kappaB (NF-kappaB) in TNFalpha-treated Ewing sarcoma cells. As oxidative stress is one of the most prominent activators of JNK, we investigated the relationship between TNFalpha-induced NF-kappaB activation and the control of oxidative stress. Inhibition of NF-kappaB activation resulted in an increase in TNFalpha-induced ROS production, lipid peroxidation and protein oxidation. Those ROS and lipid peroxides were both involved in TNFalpha-induced apoptosis, whereas only ROS elevation triggered sustained JNK activation. TNFalpha increased the level of two antioxidant enzymes, thioredoxin and manganese superoxide dismutase by an NF-kappaB-dependent mechanism. Inhibition of expression or activity of these enzymes sensitized cells to TNFalpha-induced apoptosis, indicating their functional role in protection from cell death. Thus, agents that inhibit activities of these enzymes may prove helpful in the treatment of Ewing tumors.  相似文献   

17.
The antiapoptotic properties of the inhibitor of apoptosis (IAP) family of proteins have been linked to caspase inhibition. We have previously described an alternative mechanism of XIAP inhibition of apoptosis that depends on the selective activation of JNK1. Here we report that two other members of the IAP family, NAIP and ML-IAP, both activate JNK1. Expression of catalytically inactive JNK1 blocks NAIP and ML-IAP protection against ICE- and TNF-alpha-induced apoptosis, indicating that JNK1 activation is necessary for the antiapoptotic effect of these proteins. The MAP3 kinase, TAK1, appears to be an essential component of this antiapoptotic pathway since IAP-mediated activation of JNK1, as well as protection against TNF-alpha- and ICE-induced apoptosis, is inhibited when catalytically inactive TAK1 is expressed. In addition, XIAP, NAIP, and JNK1 bind to TAK1. Importantly, expression of catalytically inactive TAK1 did not affect XIAP inhibition of caspase activity. These data suggest that XIAP's antiapoptotic activity is achieved by two separate mechanisms: one requiring TAK1-dependent JNK1 activation and the second involving caspase inhibition.  相似文献   

18.
19.
20.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd may induce neuronal apoptosis in part through activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2) pathways. However, the underlying mechanism remains enigmatic. Here we show that Cd induced generation of reactive oxygen species (ROS), leading to apoptosis of PC12 and SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged Cd-induced ROS, and prevented cell death, suggesting that Cd-induced apoptosis is attributed to its induction of ROS. Furthermore, we found that Cd-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), leading to activation of Erk1/2 and JNK, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented Cd-induced activation of Erk1/2 and JNK, as well as cell death. Cd-induced ROS was also linked to the activation of caspase-3. Pretreatment with inhibitors of JNK (SP600125) and Erk1/2 (U0126) partially blocked Cd-induced cleavage of caspase-3 and prevented cell death. However, zVAD-fmk, a pan caspase inhibitor, only partially prevented Cd-induced apoptosis. The results indicate that Cd induction of ROS inhibits PP2A and PP5, leading to activation of JNK and Erk1/2 pathways, and consequently resulting in caspase-dependent and -independent apoptosis of neuronal cells. The findings strongly suggest that the inhibitors of JNK, Erk1/2, or antioxidants may be exploited for prevention of Cd-induced neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号