首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The GTPase Ypt7p from S. cerevisiae is involved in late endosome-to-vacuole transport and homotypic vacuole fusion. We present crystal structures of the GDP- and GppNHp-bound conformation of Ypt7p solved at 1.35 and 1.6 A resolution, respectively. Despite the similarity of the overall structure to other Ypt/Rab proteins, Ypt7p displays small but significant differences. The Ypt7p-specific residues Tyr33 and Tyr37 cause a difference in the main chain trace of the RabSF2 region and form a characteristic surface epitope. Ypt7p*GppNHp does not display the helix alpha2, characteristic of the Ras-superfamily, but instead possess an extended loop L4/L5. Due to insertions in loops L3 and L7, the neighboring RabSF1 and RabSF4 regions are different in their conformations to those of other Ypt/Rab proteins.  相似文献   

2.
We have purified putative L-type Ca2+ channels from chick heart by virtue of their associated high affinity receptors for the Ca2+ channel effectors, dihydropyridines (DHPs), and phenylalkylamines (PAAs). A peptide of 185,000-190,000 daltons was found to comigrate with the peak of DHP binding activity during purification through two successive cycles of lectin affinity chromatography and sucrose density gradient centrifugation. A previously described peptide of 140,000 daltons, whose Mr was increased to approximately 180,000 under nonreducing conditions, also copurified with the 185-kDa peptide and dihydropyridine binding activity. When cardiac membranes were photolabeled with either the dihydropyridine [3H]azidopine or the PAA [3H]azidopamil prior to purification, a single, specifically labeled component of 185,000-190,000 daltons was present in the purified fractions. The properties of this 185-kDa cardiac DHP/PAA receptor were compared to the smaller 165-kDa DHP/PAA receptor previously purified from skeletal muscle. Antibodies raised against the 165-kDa skeletal muscle DHP/PAA receptor reacted with both rabbit and chick skeletal muscle receptors, but only poorly recognized, if at all, the cardiac 185-190 kDa component. The 185-kDa peptide present in the purified fractions obtained from cardiac muscle did not undergo substantial phosphorylation by cAMP-dependent protein kinase, while the purified 165-kDa peptide from rabbit and chick skeletal muscle was a good substrate for this kinase. The results show that the DHP and PAA receptors in cardiac muscle are contained in a 185-190-kDa peptide that is significantly larger than, and structurally and immunologically different from, it skeletal muscle counterpart.  相似文献   

3.
Mammalian brain ribosomes are behaviourally and structurally heterogeneous   总被引:1,自引:0,他引:1  
  相似文献   

4.
In the light of the strong potency of gastrin-related peptides on pancreatic exocrine secretion in dog, we analyzed the binding properties of peptides related to cholecystokinin (CCK) and gastrin on dog pancreatic acini compared to guinea-pig acini. Moreover, we determined apparent molecular masses of photoaffinity labelled CCK/gastrin receptors in the two models. Using the CCK radioligand, receptor selectivity towards CCK/gastrin agonists and antagonists was found to be lower in dog acini than in guinea-pig acini. Performing the binding with CCK and gastrin radioligands in combination with N2,O2'-dibutyryl-guanosine 3',5'-monophosphate, revealed that in dog acini there exist two different sub-classes of CCK/gastrin receptors having high and low selectivity, the latter ones being able to bind gastrin with high affinity (Kd = 2.1 nM). SDS-PAGE analysis of covalently cross-linked receptors using several photosensitive CCK and gastrin probes of different peptide chain lengths demonstrated that in guinea-pig, CCK peptides bound to a 84-kDa component whereas in dog pancreas, CCK and gastrin peptides bound to three distinct molecular species (Mr approximately equal to 78,000, 45,000, 28,000). Performing cross-linking in the presence of 1 microM CCK indicated that a 45-kDa protein is the putative CCK/gastrin receptor in dog pancreas. Our results support the concept of heterogeneity of CCK/gastrin receptors.  相似文献   

5.
A sequence alignment of mammalian cytochromes c with yeast iso-1-cytochrome c (y-cyt-c) shows that the yeast protein contains five extra N-terminal residues. We have been interested in understanding the question: What is the role of these five extra N-terminal residues in folding and stability of the protein? To answer this question we have prepared five deletants of y-cyt-c by sequentially removing these extra residues. During our studies on the wild type (WT) protein and its deletants, we observed that the amount of secondary structure in the guanidinium chloride (GdmCl)-induced denatured (D) state of each protein is different from that of the heat-induced denatured (H) state. This finding is confirmed by the observation of an additional cooperative transition curve of optical properties between H and D states on the addition of different concentrations of GdmCl to the already heat denatured WT y-cyt-c and its deletants at pH 6.0 and 68°C. For each protein, analysis of transition curves representing processes, native (N) state ? D state, N state ? H state, and H state ? D state, was done to obtain Gibbs free energy changes associated with all the three processes. This analysis showed that, for each protein, thermodynamic cycle accommodates Gibbs free energies associated with transitions between N and D states, N and H states, and H and D states, the characteristics required for a thermodynamic function. All these experimental observations have been supported by our molecular dynamics simulation studies.  相似文献   

6.
Stem cells function in niches, which consist of somatic cells that control the stem cells' self‐renewal, proliferation, and differentiation. Drosophila ovary germline niche consists of the terminal filament (TF) cells, cap cells, and escort stem cells; signaling from the TF cells and the cap cells is essential for maintenance of germline stem cells (GSCs). Here, we show that in the earwig Opisthocosmia silvestris, the female GSC niche is morphologically simple and consist of the TF cells and several structurally uniform escort cells. The most posterior cell of the TF (the basal cell of the TF) differs from remaining TF cells and is separated from the anterior region of the germarium by the processes of the escort cells, and consequently, does not contact the GSCs directly. We also show that between somatic cells of earwig niche argosome‐like vesicles and cytoneme‐like extensions are present. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The purification of dog liver acid beta-galactosidase is described. The dog enzyme migrated as a single major band on polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate, with a molecular weight of 60000. Antiserum raised against purified human liver acid beta-galactosidase cross-reacted with beta-galactosidase from dog liver, but not with those from cat liver or Escherichia coli. Tryptic peptide maps of the dog and human acid beta-galactosidases indicate that 21 of the 24 peptides observed were homologous; a similar result was obtained after chymotryptic peptide mapping. We conclude that dog and human acid beta-galactosidases are structurally similar, and that canine GM1 gangliosidosis (acid beta-galactosidase deficiency) is an excellent model for the same disease in man.  相似文献   

8.
Membrane-bound and secreted IgA contain structurally different alpha-chains   总被引:3,自引:0,他引:3  
Three different forms of alpha-chains are synthesized by BF0.3 and 615.2, two cloned cell lines derived from the murine B lymphoma 1.29. The three forms of alpha-chains differ in size, pI, cellular location, and rate of turnover. They were identified by means of lactoperoxidase-catalyzed radioiodination, internal 14C or 35S labeling, and immunofluorescence techniques as membrane-bound(alpha m), secreted (alpha s), and intracellular (alpha ic) proteins. Comparison of immunoglobulin products of the two lymphoma lines with those of a hybridoma cell line, Id 150, which secretes IgA of the 1.29 idiotype but lacks membrane IgA, confirmed the assignments of alpha m, alpha s, and alpha ic. Results of biosynthetic labeling of BF0.3, 615.2, and Id 150 in the presence and absence of tunicamycin suggest that the difference in m.w. and charge observed between alpha m and alpha s can be attributed to differences in primary amino acid structure rather than different degrees of glycosylation.  相似文献   

9.
The relationship between DNA polymerases alpha and delta are evaluated immunologically by monoclonal antibody specifically against DNA polymerase alpha and murine polyclonal antiserum against calf thymus DNA polymerase delta. DNA polymerases alpha and delta are found to be immunologically distinct. The structural relationship between the proliferating cell nuclear antigen (PCNA)-dependent calf DNA polymerase delta and DNA polymerase alpha from human and calf was analyzed by two-dimensional tryptic peptide mapping of the catalytic polypeptides. The results demonstrate that the catalytic polypeptides of the PCNA-dependent calf polymerase delta and DNA polymerase alpha are distinct, unrelated, and do not share any common structural determinants. The immunological and structural relationship between a recently identified PCNA-independent form of DNA polymerase delta from HeLa cells was also assessed. This PCNA-independent human polymerase delta was found to be immunologically unrelated to human polymerase alpha but to share some immunological and structural determinants with the PCNA-dependent calf thymus polymerase delta.  相似文献   

10.
Approximately 2% of mammalian genes encode proteases. Comparative genomics reveals that those involved in immunity and reproduction show the most interspecies diversity and evidence of positive selection during evolution. This is particularly true of granzymes, the cytotoxic proteases of natural killer cells and CD8+ T cells. There are 5 granzyme genes in humans and 10 in mice, and it is suggested that granzymes evolve to meet species-specific immune challenge through gene duplication and more subtle alterations to substrate specificity. We show that mouse and human granzyme B have distinct structural and functional characteristics. Specifically, mouse granzyme B is 30 times less cytotoxic than human granzyme B and does not require Bid for killing but regains cytotoxicity on engineering of its active site cleft. We also show that mouse granzyme A is considerably more cytotoxic than human granzyme A. These results demonstrate that even "orthologous" granzymes have species-specific functions, having evolved in distinct environments that pose different challenges.  相似文献   

11.
We compared the interaction of the FK506-binding protein (FKBP) with the type 3 ryanodine receptor (RyR3) and with the type 1 and type 3 inositol 1,4,5-trisphosphate receptor (IP(3)R1 and IP(3)R3), using a quantitative GST-FKBP12 and GST-FKBP12.6 affinity assay. We first characterized and mapped the interaction of the FKBPs with the RyR3. GST-FKBP12 as well as GST-FKBP12.6 were able to bind approximately 30% of the solubilized RyR3. The interaction was completely abolished by FK506, strengthened by the addition of Mg(2+), and weakened in the absence of Ca(2+) but was not affected by the addition of cyclic ADP-ribose. By using proteolytic mapping and site-directed mutagenesis, we pinpointed Val(2322), located in the central modulatory domain of the RyR3, as a critical residue for the interaction of RyR3 with FKBPs. Substitution of Val(2322) for leucine (as in IP(3)R1) or isoleucine (as in RyR2) decreased the binding efficiency and shifted the selectivity to FKBP12.6; substitution of Val(2322) for aspartate completely abolished the FKBP interaction. Importantly, the occurrence of the valylprolyl residue as alpha-helix breaker was an important determinant of FKBP binding. This secondary structure is conserved among the different RyR isoforms but not in the IP(3)R isoforms. A chimeric RyR3/IP(3)R1, containing the core of the FKBP12-binding site of IP(3)R1 in the RyR3 context, retained this secondary structure and was able to interact with FKBPs. In contrast, IP(3)Rs did not interact with the FKBP isoforms. This indicates that the primary sequence in combination with the local structural environment plays an important role in targeting the FKBPs to the intracellular Ca(2+)-release channels. Structural differences in the FKBP-binding site of RyRs and IP(3)Rs may contribute to the occurrence of a stable interaction between RyR isoforms and FKBPs and to the absence of such interaction with IP(3)Rs.  相似文献   

12.
Three proteins (31, 35 and 39 kDa) with inhibin-like activity have been isolated from bovine follicular fluid with identical NH2-terminal amino acid sequences. These polypeptides are distinct from inhibin, based on their different NH2-amino acid sequence, molecular masses, absence of a subunit structure, absence of inhibin immunoactivity and the failure of inhibin antiserum to neutralize their bioactivity in vitro. Their inhibin-like biological activities based on their ability to suppress FSH cell content by pituitary cells in culture are 5-10% of bovine 31 kDa inhibin.  相似文献   

13.
Summary The Robertson's Mutator stock of maize exhibits a high mutation rate due to the transposition of theMu family of transposable elements. All characterizedMu elements contain similar 200-bp terminal inverted repeats, yet the internal sequences of the elements may be completely unrelated. Non-Mutator stocks of maize have a 20–100-fold lower mutation rate relative to Mutator stocks, yet they contain multiple sequences that hybridize to theMu terminal inverted repeats. Most of these sequences do not cohybridize to internal regions of previously clonedMu elements. We have cloned two such sequences from the maize line B37, a non-Mutator inbred line. These sequences, termedMu4 andMu5, have an organization characteristic of transposable elements and possess 200-bpMu terminal inverted repeats that flank internal DNA, which is unrelated to other clonedMu elements.Mu4 andMu5 are both flanked by 9-bp direct repeats as has been observed for otherMu elements. However, we have no direct evidence that they have recently transposed because they have not been found in known genes. Although the internal regions ofMu4 andMu5 are not related by sequence similarity, both elements share an unusual structural feature: the terminal inverted repeats extend more than 100 bp internally fromMu-similar termini. The distribution of these elements in maize lines and related species suggests thatMu elements are an ancient component of the maize genome. Moreover, the structure of theMu termini and the fact thatMu termini are found flanking different internal sequences leads us to speculate thatMu termini once may have been capable of transposing as independent entities.  相似文献   

14.
Disulphide bonds of rabbit γ-G-globulin and the antibody of the γ-G-globulin type against the 2,4-dinitrophenyl group were split both by the oxidative sulphitolysis at pH 8.6 and by the reduction with 2-mercaptoethanol followed by carboxymethylation. The fractionation was carried out in 0.05 m formic acid containing 6m urea, in 1m propionic acid or in 6m guanidine hydrochloride. Both heavy (H) and light) (L) chains are released from the I+J fraction preceding on an elution diagram H chains when rechromatographed in a stronger desaggregation medium. A small amount of the L chains is also released on rechromatography of the H chains (isolated from 1m propionic acid) in 6m guanidine hydrochloride. The separation of the degraded γ-G-globulin in 0.05m formic acid containing 6m urea or in 6m guanidine hydrochloride showed a separation of the L chains to two fractions differing by electrophoretic properties, peptide maps and N-terminal amino acids. However, these chains exhibit a similar molecular weight, immunoelectrophoretic behaviour and similar properties on reactivation of the antibody H chain.  相似文献   

15.
16.
Brain CCK receptors are structurally distinct from pancreas CCK receptors   总被引:3,自引:0,他引:3  
Brain and pancreas cholecystokinin (CCK) receptors differ markedly in their selectivity for CCK analogs. To determine the size and subunit structure of the brain CCK receptor and compare it to that of the pancreas, 125I-CCK33 was covalently cross-linked with ultraviolet light to its receptor on mouse brain particles and purified pancreatic plasma membranes. When CCK was crosslinked to brain membranes, a single consistent major labeled protein band of Mr = 55,000 was observed in both the presence and the absence of DTT. These data with brain receptors contrast to results with pancreatic receptors where two bands of Mr = 120,000 and 80,000 are labeled in the absence and presence of DTT, respectively. These studies indicate, therefore, that the brain and pancreas CCK receptors are structurally and functionally distinct.  相似文献   

17.
The two proteins of the erythropoietin receptor are structurally similar   总被引:6,自引:0,他引:6  
The structure of the erythropoietin receptor has been identified in this laboratory as two proteins of 100 and 85 kDa by cross-linking 125I-erythropoietin (125I-EP) to the surface of erythroid cells purified from the spleens of mice infected with the anemia strain of Friend virus. This study investigates the relatedness of these two proteins and the possibility that these proteins are subunits of the functional receptor for EP. Other workers have claimed that the 100- and 85-kDa proteins are bridged by disulfide bonds. This most likely is an artifact due to the insolubility of the cross-linked membrane. Proteolytic digestion by the method of Cleveland (Cleveland, D. W., Fischer, S. G., Kirschner, M. W., and Laemmli, U. K. (1977) J. Biol. Chem. 252, 1102-1106) resulted in identical fragments from the 100- and 85-kDa proteins, which strongly suggests that the primary amino acid sequence of these two proteins is similar if not identical. Increasing the number of protease inhibitors during the preparation of membranes and the binding and cross-linking steps increased the ratio of 100-kDa protein labeled compared to the 85-kDa protein. Together these results suggest that the 85-kDa protein is derived by proteolytic cleavage of the 100-kDa receptor for EP. It is not clear whether the 100-kDa protein can bind EP in the absence of the 85-kDa protein.  相似文献   

18.
Halohydrin dehalogenases, also known as haloalcohol dehalogenases or halohydrin hydrogen-halide lyases, catalyze the nucleophilic displacement of a halogen by a vicinal hydroxyl function in halohydrins to yield epoxides. Three novel bacterial genes encoding halohydrin dehalogenases were cloned and expressed in Escherichia coli, and the enzymes were shown to display remarkable differences in substrate specificity. The halohydrin dehalogenase of Agrobacterium radiobacter strain AD1, designated HheC, was purified to homogeneity. The k(cat) and K(m) values of this 28-kDa protein with 1,3-dichloro-2-propanol were 37 s(-1) and 0.010 mM, respectively. A sequence homology search as well as secondary and tertiary structure predictions indicated that the halohydrin dehalogenases are structurally similar to proteins belonging to the family of short-chain dehydrogenases/reductases (SDRs). Moreover, catalytically important serine and tyrosine residues that are highly conserved in the SDR family are also present in HheC and other halohydrin dehalogenases. The third essential catalytic residue in the SDR family, a lysine, is replaced by an arginine in halohydrin dehalogenases. A site-directed mutagenesis study, with HheC as a model enzyme, supports a mechanism for halohydrin dehalogenases in which the conserved Tyr145 acts as a catalytic base and Ser132 is involved in substrate binding. The primary role of Arg149 may be lowering of the pK(a) of Tyr145, which abstracts a proton from the substrate hydroxyl group to increase its nucleophilicity for displacement of the neighboring halide. The proposed mechanism is fundamentally different from that of the well-studied hydrolytic dehalogenases, since it does not involve a covalent enzyme-substrate intermediate.  相似文献   

19.
A comparison of the three-dimensional structures of the flavin mononucleotide (FMN)-dependent enzymes glycolate oxidase, flavocytochrome b2, and trimethylamine dehydrogenase is presented. Their flavin-binding domains all have the same structural motif, the 8-fold beta/alpha-barrel domain, which is also present in a large number of other enzymes. FMN is bound in a similar fashion in all three enzymes. The binding site is at the carboxyl-terminal end of the eight beta-strands of the barrel where the active site is invariably found in this type of domain structure. The similarity of the structures of glycolate oxidase and flavocytochrome b2 extends to the loop regions and even outside the beta/alpha-barrels with a root mean square deviation of 0.93 A for 311 superimposed C alpha-atoms and with a sequence identity of 37%. A detailed analysis of their active sites shows, however, that the orientation of FMN is significantly different in the two structures due to different conformations of residues in the end of strand one. Thus, in flavocytochrome b2 a hydrogen bond is formed between the FMN N-5 position and the main chain amide of Ala-198, while in glycolate oxidase, the ring system is tilted away from the strand, creating a pocket on the re-side of the FMN ring where a water molecule is bound. Model building shows that this site could accommodate the hydroperoxide moiety of a FMN-4a-hydroperoxide intermediate. Thus, in the course of evolution, a few mutations in, and close to, the active sites have fine tuned these enzymes to exert their specific functions as an oxidase or transferase, respectively.  相似文献   

20.
Human calbindin D(28k) is a Ca(2+) binding protein that has been implicated in the protection of cells against apoptosis. In this study, the structural and functional significance of the five cysteine residues present in this protein have been investigated through a series of cysteine-to-serine mutations. The mutants were studied under relevant physiological redox potentials in which conformational changes were monitored using ANS binding. Urea-induced denaturations, as monitored by intrinsic tryptophan fluorescence, were also carried out to compare their relative stability. It was shown that the two N-terminal cysteine residues undergo a redox-driven structural change consistent with disulfide bond formation. The other cysteine residues are not by themselves sufficient at inducing structural change, but they accentuate the disulfide-dependent conformational change in a redox-dependent manner. Mass spectrometry data show that the three C-terminal cysteine residues can be modified by glutathione. Furthermore, under oxidizing conditions, the data display additional species consistent with the conversion of cysteine thiols to sulfenic acids and disulfides to disulfide-S-monoxides. The biological function of calbindin D(28k) appears to be tied to the redox state of the cysteine residues. The two N-terminal cysteine residues are required for activation of myo-inositol monophosphatase, and enzyme activation is enhanced under conditions in which these residues are oxidized. Last, oxidized calbindin D(28k) binds Ca(2+) with lower affinity than does the reduced protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号