首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lotus japonicus LjSYM2 gene, and the Pisum sativum orthologue PsSYM19, are required for the formation of nitrogen-fixing root nodules and arbuscular mycorrhiza. Here we describe the map-based cloning procedure leading to the isolation of both genes. Marker information from a classical AFLP marker-screen in Lotus was integrated with a comparative genomics approach, utilizing Arabidopsis genome sequence information and the pea genetic map. A network of gene-based markers linked in all three species was identified, suggesting local colinearity in the region around LjSYM2/PsSYM19. The closest AFLP marker was located just over 200 kb from the LjSYM2 gene, the marker SHMT, which was converted from a marker on the pea map, was only 7.9 kb away. The LjSYM2/PsSYM19 region corresponds to two duplicated segments of the Arabidopsis chromosomes AtII and AtIV. Lotus homologues of Arabidopsis genes within these segments were mapped to three clusters on LjI, LjII and LjVI, suggesting that during evolution the genomic segment surrounding LjSYM2 has been subjected to duplication events. However, one marker, AUX-1, was identified based on colinearity between Lotus and Arabidopsis that mapped in physical proximity of the LjSym2 gene.Communicated by J.S. Heslop-Harrison  相似文献   

2.
We have analyzed the expression patterns of two Fox genes, FoxE and FoxQ, in the ascidian Ciona intestinalis. Expression of Ci-FoxE was specific to the endostyle of adults, being prominent in the thyroid-equivalent region of zone 7. Ci-FoxQ was expressed in several endodermal organs of adult ascidians, such as the endostyle, branchial sac and esophagus. In the endostyle, the pattern of Ci-FoxQ expression was similar to that of CiTTF-1, being prominent in the thyroid-equivalent regions of zones 7 and 8. Therefore, these Fox genes may perform thyroid-equivalent functions in the ascidian endostyle.Edited by N. Satoh  相似文献   

3.
The development of tissue culture systems in duckweeds has, to date, been limited to species of the genus Lemna. We report here the establishment of an efficient tissue culture cycle (callus induction, callus growth and plant regeneration) for Spirodela oligorrhiza Hegelm SP, Spirodela punctata 8717 and Lemna gibba var. Hurfeish. Significant differences were found among the three duckweed species pertaining to carbohydrate and phytohormone requirements for callus induction, callus growth and frond regeneration. In vitro incubation with poorly assimilated carbohydrates such as galactose (S. oligorrhiza SP and L. gibba var. Hurfeish) and sorbitol (S. punctata 8717) as sole carbon source yielded high levels of callus induction on phytohormone-supplemented medium. Sorbitol is required for optimal callus growth of S. oligorrhiza SP and S. punctata 8717, while sucrose is required for callus growth of L. gibba var. Hurfeish. Sucrose either alone (S. oligorrhiza SP, L. gibba var. Hurfeish) or in addition to sorbitol (S. punctata 8717) is required for frond regeneration.Abbreviations ABA: (±)-Abscisic acid - BA: N6-Benzyladenine - 2,4-D 2,4-Dichlorophenoxyacetic acid - Dicamba: 3,6-Dichloro-2-methoxybenzoic acid - 2iP: N6-(2-Isopentenyl)adenine - NAA: -Naphthaleneacetic acid - PCA: p-Chlorophenoxy acetic acid - Picloram: 4-Amino-3,5,6-trichloropicolinic acid - TDZ: Thidiazuron Communicated by A. AltmanJ. Li and M. Jain contributed equally to the research reported in this article.  相似文献   

4.
In vertebrate development the Dickkopf protein family carries out multiple functions and is represented by at least four different genes with distinct biological activities. In invertebrates such as Drosophila and Caenorhabditis, Dickkopf genes have so far not been identified. Here we describe the identification and characterization of a Dickkopf gene with a deduced amino acid sequence closely related to that of chicken Dkk-3 in the basal metazoan Hydra. HyDkk-3 appears to be the only Dickkopf gene in Hydra. The gene is expressed in the gastric region in nematocytes at a late differentiation stage. In silico searches of EST and genome databases indicated the absence of Dkk genes from the protostomes Drosophila and Caenorhabditis, whereas within the deuterostomes, a Dkk-3 gene could be identified in the genome of the urochordate Ciona intestinalis. The results indicate that at an early stage of evolution of multicellularity Dickkopf proteins have already played important roles as developmental signals. They also suggest that vertebrate Dkk-1, 2 and 4 may have originated from a common ancestor gene of Dkk-3.H. Fedders and R. Augustin contributed equally to this workEdited by D. Tautz  相似文献   

5.
Transposable elements might be importantly involved in citrus genetic instability and genome evolution. The presence of gypsy like retrotransposons, their heterogeneity and genomic distribution in Citrus and Poncirus, have been investigated. Eight clones containing part of the POL coding region of gypsy like retrotransposons have been isolated from a commercial variety of Citrus clementina, one of the few sexual species in Citrus. Four of the eight clones might correspond to active elements given that they present all the conserved motifs described in the literature as essential for activity, no in-frame stop codon and no frame-shift mutation. High homology has been found between some of these citrus elements and retroelements within a resistance-gene cluster from potato, another from Poncirus trifoliata and two putative resistance polyproteins from rice. Nested copies of gypsy like elements are scattered along the Citrus and Poncirus genomes. The results on genomic distribution show that these elements were introduced before the divergence of both genera and evolved separately thereafter. IRAPs based on gypsy and copia types of retrotransposons seem to distribute differently, therefore gypsy based IRAPs prove a new, complementary set of molecular markers in Citrus to study and map genetic variability, especially for disease resistance. Similarly to copia-derived IRAPs, the number of copies and heterozygosity values found for gypsy derived IRAPs are lower in Poncirus than in Citrus aurantium, which is less apomictic and the most usual rootstock for clementines until 1970.Communicated by C. Möllers  相似文献   

6.
The Suppressor of Underreplication ( SuUR) gene contributes to the regulation of DNA replication in regions of intercalary heterochromatin in salivary gland polytene chromosomes. In the SuUR mutant these regions complete replication earlier than in wild type and, as a consequence, undergo full polytenization. Here we describe the effects of ectopic expression of SuUR using the GAL4-UAS system. We demonstrate that ectopically expressed SuUR exerts qualitatively distinct influences on polyploid and diploid tissues. Ectopic expression of SuUR inhibits DNA replication in polytene salivary gland nuclei, and reduces the degree of amplification of chorion protein genes that occurs in the follicle cell lineage. Effects caused by ectopic SuUR in diploid tissues vary considerably; there is no obvious effect on eye formation, but apoptosis is observed in the wing disc, and wing shape is distorted. The effect of ectopic SuUR expression is enhanced by mutations in the genes E2F and mus209 ( PCNA). Differential responses of polyploid and diploid cells to ectopic SuUR may reflect differences in the mechanisms underlying mitotic cell cycles and endocycles.Communicated by G. P. Georgiev  相似文献   

7.
The grain color of wheat affects not only the brightness of flour, but also tolerance to preharvest sprouting. Grain color is controlled by dominant R-1 genes located on the long arm of hexaploid wheat chromosomes 3A, 3B, and 3D (R-A1, R-B1, and R-D1, respectively). The red pigment of the grain coat is composed of catechin and proanthocyanidin (PA), which are synthesized via the flavonoid biosynthetic pathway. We isolated the Tamyb10-A1, Tamyb10-B1, and Tamyb10-D1 genes, located on chromosomes 3A, 3B, and 3D, respectively. These genes encode R2R3-type MYB domain proteins, similar to TT2 of Arabidopsis, which controls PA synthesis in testa. In recessive R-A1 lines, two types of Tamyb10-A1 genes: (1) deletion of the first half of the R2-repeat of the MYB region and (2) insertion of a 2.2-kb transposon belonging to the hAT family. The Tamyb10-B1 genes of recessive R-B1 lines had 19-bp deletion, which caused a frame shift in the middle part of the open reading frame. With a transient assay using wheat coleoptiles, we revealed that the Tamyb10 gene in the dominant R-1 allele activated the flavonoid biosynthetic genes. We developed PCR-based markers to detect the dominant/recessive alleles of R-A1, R-B1, and R-D1. These markers proved to be correlated to known R-1 genotypes of 33 varieties except for a mutant with a single nucleotide substitution. Furthermore, double-haploid (DH) lines derived from the cross between red- and white-grained lines were found to necessarily carry functional Tamyb10 gene(s). Thus, PCR-based markers for Tamyb10 genes are very useful to detect R-1 alleles.  相似文献   

8.
This study aimed to compare the genetic control of cacao resistance to three species of Phytophthora: Phytophthora palmivora, Phytophthora megakarya and Phytophthora capsici. The study was conducted on 151 hybrid progenies created in Côte d'Ivoire and grown in a green-house in Montpellier. Phytophthora resistance was screened by leaf-test inoculation with two different strains per species. Selection of the best individuals for resistance to P. palmivora at a 10% selection rate, would lead to a genetic progress of 47% in the disease evaluation for this species and a genetic progress of 42% and 21% for the two other species. A genetic map with a total length of 682 cM was built with 213 markers, 190 AFLPs and 23 microsatellites. QTLs were identified using composite interval mapping. QTLs were found located in six genomic regions. One of these was detected with five strains belonging to the three Phytophthora species. Two other regions were detected with two or three strains of two different species. Three additional QTLs were detected for only one species of Phytophthora. Each QTL explained between 8 to 12% of the phenotypic variation. For each strain, between 11.5% to 27.5% of the total phenotypic variation could be explained by the QTLs identified. The identification of multiple QTLs involved in resistance to Phytophthora offers the possibility to improve durability of resistance in cocoa by a possible cumulation of many different resistance genes located in different chromosome regions using marker-aided selection.Communicated by H.F. Linskens  相似文献   

9.
The MADS box genes participate in different steps of vegetative and reproductive plant development, including the most important phases of the reproductive process. Here we describe the isolation and characterisation of two Asparagus officinalis MADS box genes, AOM3 and AOM4. The deduced AOM3 protein shows the highest degree of similarity with ZAG3 and ZAG5 of maize, OsMADS6 of rice and AGL6 of Arabidopsis thaliana. The deduced AOM4 protein shows the highest degree of similarity with AOM1 of asparagus, the SEP proteins of Arabidopsis and the rice proteins OsMADS8, OsMADS45 and OsMADS7. The high level of identity between AOM1 and AOM4 made impossible the preparation of probes specific for one single gene, so the hybridisation signal previously described for AOM1 is probably due to the expression of both genes. The expression profile of AOM3 and AOM1/AOM4 during flower development is identical, and similar to that of the SEP genes. Asparagus genes, however, are expressed not only in flower organs, but also in the different meristem present on the apical region of the shoot during the flowering season: the apical meristem and the three lateral meristems emerging from the leaf axillary region that will give rise to flowers and lateral inflorescences during flowering season, and to phylloclades and branches during the subsequent vegetative phase. The expression of AOM3 and AOM1/AOM4 in these meristems appears to be correlated with the reproductive function of the apex as the hybridisation signal disappears when the apex switches to vegetative function.  相似文献   

10.
In Drosophila polytene chromosomes, regions of intercalary heterochromatin are scattered throughout the euchromatic arms. Here, we present data on the first fine analysis of the individual intercalary heterochromatin region, 75C1-2, located in the 3L chromosome. By using electron microscopy, we demonstrated that this region appears as three closely adjacent condensed bands. Mapping of the region on the physical map by means of the chromosomal rearrangements with known breakpoints showed that the length of the region is about 445 kb. Although it seems that the SUUR protein binds to the whole 75C1-2 region, the proximal part of the region is fully polytenized, so the DNA underreplication zone is asymmetric and located in the distal half of the region. Finally, we speculate that intercalary heterochromatin regions of Drosophila polytene chromosomes are organized into three different types with respect to the localization of the underreplication zone.  相似文献   

11.
12.
13.
Centromeric repetitive sequences were isolated from Arabidopsis halleri ssp. gemmifera and A. lyrata ssp. kawasakiana. Two novel repeat families isolated from A. gemmifera were designated pAge1 and pAge2. These repeats are 180 bp in length and are organized in a head-to-tail manner. They are similar to the pAL1 repeats of A. thaliana and the pAa units of A. arenosa. Both A. gemmifera and A. kawasakiana possess the pAa, pAge1 and pAge2 repeat families. Sequence comparisons of different centromeric repeats revealed that these families share a highly conserved region of approximately 50 bp. Within each of the four repeat families, two or three regions showed low levels of sequence variation. The average difference in nucleotide sequence was approximately 10% within families and 30% between families, which resulted in clear distinctions between families upon phylogenetic analysis. FISH analysis revealed that the localization patterns for the pAa, pAge1 and pAge2 families were chromosome specific in A. gemmifera and A. kawasakiana. In one pair of chromosomes in A. gemmifera, and three pairs of chromosomes in A. kawasakiana, two repeat families were present. The presence of three families of centromeric repeats in A. gemmifera and A. kawasakiana indicates that the first step toward homogenization of centromeric repeats occurred at the chromosome level.Communicated by W. R. McCombie  相似文献   

14.
Phylogenetic analysis of the plastid (chloroplast) DNA matK gene of Zosteraceae species was undertaken. A molecular phylogenetic tree based on matK sequence data showed the monophyly of Heterozostera tasmanica and subgenus Zosterella and did not support the separation of Heterozostera from the genus Zostera. The tree based on matK supported the monophyly of the subgenus Zostera, and showed that Zosteraceae consist of three main groups: Phyllospadix, which is clearly defined by being dioecious; the subgenus Zosterella and Heterozostera; and the subgenus Zostera. Character-state reconstruction of chromosome number and geographic distribution for our molecular phylogenetic tree showed that 2n=12 is a plesiomorphic character for Zostera and Heterozostera, that the chromosome number was doubled or tripled in two lineages, and that the initial speciation of Zostera and Heterozostera occurred in the Northern Hemisphere. The matK tree showed the close affinity of Z. noltii and Z. japonica, which have disjunct distributions. Zostera marina, which is the only widely distributed species in the subgenus Zostera, also occurring in the northern Atlantic, was shown to be embedded within other subgenus Zostera species.  相似文献   

15.
Comparative genome analysis has been performed between alfalfa ( Medicago sativa) and pea ( Pisum sativum), species which represent two closely related tribes of the subfamily Papilionoideae with different basic chromosome numbers. The positions of genes on the most recent linkage map of diploid alfalfa were compared to those of homologous loci on the combined genetic map of pea to analyze the degree of co-linearity between their linkage groups. In addition to using unique genes, analysis of the map positions of multicopy (homologous) genes identified syntenic homologs (characterized by similar positions on the maps) and pinpointed the positions of non-syntenic homologs. The comparison revealed extensive conservation of gene order between alfalfa and pea. However, genetic rearrangements (due to breakage and reunion) were localized which can account for the difference in chromosome number (8 for alfalfa and 7 for pea). Based on these genetic events and our increasing knowledge of the genomic structure of pea, it was concluded that the difference in genome size between the two species (the pea genome is 5- to 10-fold larger than that of alfalfa) is not a consequence of genome duplication in pea. The high degree of synteny observed between pea and Medicago loci makes further map-based cloning of pea genes based on the genome resources now available for M. truncatula a promising strategy.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by W. R. McCombie  相似文献   

16.
A Lens map was developed based on the segregational analysis of five kinds of molecular and morphological genetic markers in 113 F2 plants obtained from a single hybrid of Lens culinaris ssp. culinaris × L. c. ssp. orientalis. A total of 200 markers were used on the F2 population, including 71 RAPDs, 39 ISSRs, 83 AFLPs, two SSRs and five morphological loci. The AFLP technique generated more polymorphic markers than any of the others, although AFLP markers also showed the highest proportion (29.1%) of distorted segregation. At a LOD score of 3.0, 161 markers were grouped into ten linkage groups covering 2,172.4 cM, with an average distance between markers of 15.87 cM. There were six large groups with 12 or more markers each, and four small groups with two or three markers each. Thirty-nine markers were unlinked. A tendency for markers to cluster in the central regions of large linkage groups was observed. Likewise, clusters of AFLP, ISSR or RAPD markers were also observed in some linkage groups, although RAPD markers were more evenly spaced along the linkage groups. In addition, two SSR, three RAPD and one ISSR markers segregated as codominant. ISSR markers are valuable tools for Lens genetic mapping and they have a high potential in the generation of saturated Lens maps.Communicated by H.C. Becker  相似文献   

17.
Sex-determining cascades are supposed to have evolved in a retrograde manner from bottom to top. Wilkins 1995 hypothesis finds support from our comparative studies in Drosophila melanogaster and Musca domestica, two dipteran species that separated some 120 million years ago. The sex-determining cascades in these flies differ at the level of the primary sex-determining signal and their targets, Sxl in Drosophila and F in Musca. Here we present evidence that they converge at the level of the terminal regulator, doublesex (dsx), which conveys the selected sexual fate to the differentiation genes. The dsx homologue in Musca, Md-dsx, encodes male-specific (MdDSXM) and female-specific (MdDSXF) protein variants which correspond in structure to those in Drosophila. Sex-specific regulation of Md-dsx is controlled by the switch gene F via a splicing mechanism that is similar but in some relevant aspects different from that in Drosophila. MdDSXF expression can activate the vitellogenin genes in Drosophila and Musca males, and MdDSXM expression in Drosophila females can cause male-like pigmentation of posterior tergites, suggesting that these Musca dsx variants are conserved not only in structure but also in function. Furthermore, downregulation of Md-dsx activity in Musca by injecting dsRNA into embryos leads to intersexual differentiation of the gonads. These results strongly support a role of Md-dsx as the final regulatory gene in the sex-determining hierarchy of the housefly.Edited by D. Tautz  相似文献   

18.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

19.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

20.
Chromatin organization in the holocentric chromosomes of the green apple aphid Aphis pomi has been investigated at a cytological level after C-banding, NOR, Giemsa, fluorochrome staining and fluorescent in situ hybridization (FISH). C-banding technique showed that heterochromatic bands are exclusively located on X chromosomes. This data represents a peculiar feature that clearly contradicts the equilocal distribution of heterochromatin typical of monocentric chromosomes. Moreover, silver staining and FISH carried out with a 28S rDNA probe localized rDNA genes on one telomere of each X chromosome; CMA3 staining reveals that these silver positive telomeres are the only GC-rich regions among A. pomi heterochromatin, whereas all other C-positive bands are DAPI positive thus containing AT-rich DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号