共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaves of Flaveria brownii exhibited slightly higher amounts of oxygen inhibition of photosynthesis than the C4 species, Flaveria trinervia, but considerably less than the C3 species, Flaveria cronquistii. The photosynthetic responses to intercellular CO2, light and leaf temperature were much more C4-like than C3-like, although 21% oxygen inhibited the photosynthetic rate, depending on conditions, up to 17% of the photosynthesis rate observed in 2% O2. The quantum yield for CO2 uptake in F. brownii was slightly higher than that for the C4 species F. trinervia in 2% O2, but not significantly different in 21% O2. The quantum yield was inhibited 10% in the presence of 21% O2 in F. brownii, yet no significant inhibition was observed in F. trinervia. An inhibition of 27% was observed for the quantum yield of F. cronquistii in the presence of 21% O2. The photosynthetic response to very low intercellular CO2 partial pressures exhibited a unique pattern in F. brownii, with a break in the linear slope observed at intercellular CO2 partial pressure values between 15 and 20 μbar when analyzed in 21% O2. No significant break was observed when analyzed in 2% O2. When taken collectively, the gas-exchange results reported here are consistent with previous biochemical studies that report incomplete intercellular compartmentation of the C3 and C4 enzymes in this species, and suggest that F. brownii is an advanced, C4-like C3-C4 intermediate. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
Degree of C(4) Photosynthesis in C(4) and C(3)-C(4)Flaveria Species and Their Hybrids : I. CO(2) Assimilation and Metabolism and Activities of Phosphoenolpyruvate Carboxylase and NADP-Malic Enzyme
下载免费PDF全文

The degree of C4 photosynthesis was assessed in four hybrids among C4, C4-like, and C3-C4 species in the genus Flaveria using 14C labeling, CO2 exchange, 13C discrimination, and C4 enzyme activities. The hybrids incorporated from 57 to 88% of the 14C assimilated in a 10-s exposure into C4 acids compared with 26% for the C3-C4 species Flaveria linearis, 91% for the C4 species Flaveria trinervia, and 87% for the C4-like Flaveria brownii. Those plants with high percentages of 14C initially fixed into C4 acids also metabolized the C4 acids quickly, and the percentage of 14C in 3-phosphoglyceric acid plus sugar phosphates increased for at least a 30-s exposure to 12CO2. This indicated a high degree of coordination between the carbon accumulation and reduction phases of the C4 and C3 cycles. Synthesis and metabolism of C4 acids by the species and their hybrids were highly and linearly correlated with discrimination against 13C. The relationship of 13C discrimination or 14C metabolism to O2 inhibition of photosynthesis was curvilinear, changing more rapidly at C4-like values of 14C metabolism and 13C discrimination. Incorporation of initial 14C into C4 acids showed a biphasic increase with increased activities of phosphoenolpyruvate carboxylase and NADP-malic enzyme (steep at low activities), but turnover of C4 acids was linearly related to NADP-malic enzyme activity. Several other traits were closely related to the in vitro activity of NADP-malic enzyme but not phosphoenolpyruvate carboxylase. The data indicate that the hybrids have variable degrees of C4 photosynthesis but that the carbon accumulation and reduction portions of the C4 and C3 cycles are well coordinated. 相似文献
11.
12.
Formation of (4R)- and (4S)-4-hydroxyochratoxin A from ochratoxin A by liver microsomes from various species. 总被引:1,自引:6,他引:1
下载免费PDF全文

F C Strmer C E Hansen J I Pedersen G Hvistendahl A J Aasen 《Applied microbiology》1981,42(6):1051-1056
Two metabolic products were formed from ochratoxin A by human, pig, and rat liver microsomal fractions in the presence of reduced nicotinamide adenine dinucleotide phosphate. They were isolated from the incubation mixture in the presence of pig liver microsomes by extraction, thin-layer chromatography, and high-pressure liquid chromatography Their structures are suggested to be (4R)- and (4S)-4-hydroxyochratoxin A on the basis of mass and nuclear magnetic resonance spectroscopy. Km and the maximum velocity for the formation of the two metabolites by human, pig, and rat microsomes were determined. Their formation was inhibited by carbon monoxide and metyrapone. The results indicate that the microsomal hydroxylation system is a cytochrome P-450 and that different species are involved in the formation of the two epimeric forms of 4-hydroxyochratoxin A. 相似文献
13.
Formation of (4R)- and (4S)-4-hydroxyochratoxin A and 10-hydroxyochratoxin A from Ochratoxin A by rabbit liver microsomes.
下载免费PDF全文

Three metabolites were formed from ochratoxin A in the presence of rabbit liver microsomal fractions and NADPH. They were isolated by extraction, thin-layer chromatography, and high-pressure liquid chromatography. Two of them were identified as (4R)- and (4S)-4-hydroxyochratoxin A. It is suggested on the basis of mass and nuclear magnetic resonance spectroscopy that the third metabolite is 10-hydroxyochratoxin A. The formation of the metabolites was inhibited by carbon monoxide and metyrapone and was stimulated when microsomes from phenobarbital-treated animals were used. The results suggest that cytochrome P-450 catalyzes the formation of these metabolites. 相似文献
14.
15.
16.
17.
Christin PA Osborne CP Sage RF Arakaki M Edwards EJ 《Journal of experimental botany》2011,62(9):3171-3181
C(4) photosynthesis is a plant adaptation to high levels of photorespiration. Physiological models predict that atmospheric CO(2) concentration selected for C(4) grasses only after it dropped below a critical threshold during the Oligocene (~30 Ma), a hypothesis supported by phylogenetic and molecular dating analyses. However the same models predict that CO(2) should have reached much lower levels before selecting for C(4) eudicots, making C(4) eudicots younger than C(4) grasses. In this study, different phylogenetic datasets were combined in order to conduct the first comparative analysis of the age of C(4) origins in eudicots. Our results suggested that all lineages of C(4) eudicots arose during the last 30 million years, with the earliest before 22 Ma in Chenopodiaceae and Aizoaceae, and the latest probably after 2 Ma in Flaveria. C(4) eudicots are thus not globally younger than C(4) monocots. All lineages of C(4) plants evolved in a similar low CO(2) atmosphere that predominated during the last 30 million years. Independent C(4) origins were probably driven by different combinations of specific factors, including local ecological characteristics such as habitat openness, aridity, and salinity, as well as the speciation and dispersal history of each clade. Neither the lower number of C(4) species nor the frequency of C(3)-C(4) intermediates in eudicots can be attributed to a more recent origin, but probably result from variation in diversification and evolutionary rates among the different groups that evolved the C(4) pathway. 相似文献
18.
19.
20.
Biochemical studies with a new cytotoxic immunosuppressive agent, 3-acetyl-5-(4-fluorobenzylidene)-2,5-dihydro-4-hydroxy-2-oxothiophen (I.C.I. 47776)
下载免费PDF全文

1. A new cytotoxic agent, 3-acetyl-5-(4-fluorobenzylidene)-2,5-dihydro-4-hydroxy-2-oxothiophen (I.C.I. 47776), strongly inhibits protein and nucleic acid synthesis and, to a smaller extent, respiration in lymph-node cells and Landschütz ascites-tumour cells in vitro. 2. The activity of I.C.I. 47776 in vitro declines as the pH of the medium is increased and is inversely proportional to the concentration of serum in the medium. 3. The compound has no effect on the incorporation of leucine by a cell-free preparation from Landschütz ascites cells containing ATP and phosphoenolpyruvate. 4. I.C.I. 47776 stimulates glycolysis in suspensions of Landschütz ascites cells in the presence of excess of glucose but has no effect on glycolysis in suspensions of rat lymph-node cells. 5. I.C.I. 47776 markedly depresses ATP concentration in ascites cells in the absence of glucose but has no effect on the ATP concentration in the presence of glucose. The inhibition of protein synthesis by I.C.I. 47776 in ascites cells is, however, only partially reversed by the addition of glucose. 6. The ATP concentration of rat lymph-node cells incubated with I.C.I. 47776 in the absence of glucose is also markedly depressed but the addition of glucose increases the ATP concentration only slightly. Further, glucose has no effect on the inhibition of protein synthesis in lymph-node cells by I.C.I. 47776. 7. It is suggested that I.C.I. 47776 inhibits protein and nucleic acid synthesis in cell suspensions indirectly by acting as a mitochondrial poison. 8. The relevance of studies on the activity of I.C.I. 47776 in vitro to its cytotoxic and immunosuppressive action in vivo is discussed. 相似文献