首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal Antibodies to Benzodiazepines   总被引:1,自引:0,他引:1  
Four hybridoma lines secreting monoclonal antibodies to benzodiazepines were produced after BALB/c mice were immunized with a benzodiazepine-bovine serum albumin conjugate. The monoclonal antibodies were purified from ascites fluids, and their binding affinities for benzodiazepines and other benzodiazepine receptor ligands were determined. These antibodies have very high binding affinities for diazepam, flunitrazepam, Ro5-4864, Ro5-3453, Ro11-6896, and Ro5-3438 (the KD values are in the 10(-9) M range). However, these antibodies have low affinities for the benzodiazepine receptor inverse agonists (beta-carbolines) and antagonists (Ro15-1788 and CGS-8216).  相似文献   

2.
Four hybridoma lines secreting monoclonal antibodies to benzodiazepines were produced after BALB/c mice were immunized with a benzodiazepine-bovine serum albumin conjugate. The monoclonal antibodies were purified from ascites fluids, and their binding affinities for benzodiazepines and other benzodiazepine receptor ligands were determined. These antibodies have very high binding affinities for diazepam, flunitrazepam, Ro5-4864, Ro5-3453, Ro11-6896, and Ro5-3438 (the Kd values are in the 10(-9) M range). However, these antibodies have very low affinities for the benzodiazepine receptor inverse agonists (beta-carbolines) and antagonists (Ro15-1788 and CGS-8216). One of the monoclonal antibodies (21-7F9) has been used to demonstrate the existence of benzodiazepine-like molecules in the brain and for the purification of these molecules. Immunocytochemical experiments show that these molecules are neuronal and not glial and that they are ubiquitously distributed throughout the brain. Immunoblots indicate the presence of benzodiazepine-like epitopes in several brain peptides. An endogenous substance that binds to the central-type benzodiazepine receptor with agonist properties has been purified to homogeneity from the bovine brain. The purification consisted on immunoaffinity chromatography on immobilized monoclonal anti-benzodiazepine antibody followed by gel filtration on Sephadex G-25 and two reverse phase HPLCs. The purified substance has a small molecular weight and its activity is protease resistant. The endogenous substance blocks the binding of agonists, inverse agonists and antagonists to the central-type benzodiazepine receptor but it does not inhibit the binding of Ro5-4864 to the peripheral-type benzodiazepine receptor. The neurotransmitter gamma-aminobutyric acid increases the affinity of the benzodiazepine receptor for the purified substance. Preliminary evidence indicates that the purified substance is a benzodiazepine with a molecular structure that is identical or very close to N-desmethyldiazepam.  相似文献   

3.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

4.
The imidazobenzodiazepine Ro 15-4513 antagonizes methoxyflurane anesthesia   总被引:1,自引:0,他引:1  
E J Moody  P Skolnick 《Life sciences》1988,43(16):1269-1276
Parenteral administration of the imidazobenzodiazepine Ro 15-4513 (a high affinity ligand of the benzodiazepine receptor with partial inverse agonist qualities) produced a dose dependent reduction in sleep time of mice exposed to the inhalation anesthetic, methoxyflurane. The reductions in methoxyflurane sleep time ranged from approximately 20% at 4 mg/kg to approximately 38% at 32 mg/kg of Ro 15-4513. Co-administration of the benzodiazepine receptor antagonist Ro 15-1788 (16 mg/kg) or the inverse agonists DMCM (5-20 mg/kg) and FG 7142 (22.5 mg/kg) blocks this effect which suggests that the reductions in methoxyflurane sleep time produced by Ro 15-4513 are mediated via occupation of benzodiazepine receptors. Moreover, neither DMCM (5-20 mg/kg) nor FG 7142 (22.5 mg/kg) reduced methoxyflurane sleep time which suggests this effect of Ro 15-4513 cannot be attributed solely to its partial inverse agonist properties. These observations support recent findings that inhalation anesthetics may produce their depressant effects via perturbation of the benzodiazepine/GABA receptor chloride channel complex, and suggest that Ro 15-4513 may serve as a prototype of agents capable of antagonizing the depressant effects of inhalation anesthetics such as methoxyflurane.  相似文献   

5.
The effect of the Type I benzodiazepine (BDZ) receptor agonist, CL 218,872, on convulsions generated by low doses of methyl beta-carboline-3-carboxylic acid ( MBCC ), bicuculline, picrotoxin and pentylenetetrazole (PTZ) in mice was examined. Low doses of CL 218,872 enhanced the convulsions produced by all agents except PTZ. An anticonvulsant action of CL 218,872 was observed at higher doses. Since CL 218,872 exhibits proconvulsive effects at low doses, and a proconvulsant action is a characteristic of compounds classified as BDZ antagonists, it appears that CL 218,872 has some antagonist action.  相似文献   

6.
Benzodiazepines are used for their sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsive effects. They exert their actions through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid, type A (GABA(A)) receptor channel, where they act as positive allosteric modulators. To start to elucidate the relative positioning of benzodiazepine binding site ligands in their binding pocket, GABA(A) receptor residues thought to reside in the site were individually mutated to cysteine and combined with benzodiazepine analogs carrying substituents reactive to cysteine. Direct apposition of such reactive partners is expected to lead to an irreversible site-directed reaction. We describe here the covalent interaction of alpha(1)H101C with a reactive group attached to the C-7 position of diazepam. This interaction was studied at the level of radioactive ligand binding and at the functional level using electrophysiological methods. Covalent reaction occurs concomitantly with occupancy of the binding pocket. It stabilizes the receptor in its allosterically stimulated conformation. Covalent modification is not observed in wild type receptors or when using mutated alpha(1)H101C-containing receptors in combination with the reactive ligand pre-reacted with a sulfhydryl group, and the modification rate is reduced by the binding site ligand Ro15-1788. We present in addition evidence that gamma(2)Ala-79 is probably located in the access pathway of the ligand to its binding pocket.  相似文献   

7.
The peripheral benzodiazepine receptor (PBR) has been implicated in several mitochondrial functions but the exact physiological role of this receptor is still under debate. Since the mitochondria have been attributed a central role in cell death, we have determined the effects of various PBR agonists and antagonists on the apoptosis of the human lymphoblastoid cell line U937. On this cell type, the PBR agonist Ro5-4864 was found to strongly protect the cells against apoptosis induced by TNFalpha. The antiapoptotic effect of PBR agonists was due to a selective interaction with the PBR as demonstrated by: (1) a close correlation between the antiapoptotic activity of various PBR agonists and their respective affinity for the PBR determined on the same cells, (2) a lack of effect of central benzodiazepine receptors agonists such as clonazepam on cell survival, (3) the lack of an antiapoptotic activity of Ro5-4864 on wild-type Jurkat cells (lacking the PBR receptor) and the reappearance of this effect on PBR-transfected Jurkat cells, and (4) the blockade of the antiapoptotic effect of PBR agonists by a selective PBR antagonist. The present results therefore indicate that PBR agonists are potent antiapoptotic compounds and show that this effect might represent a major function for this enigmatic receptor.  相似文献   

8.
Receptor binding and behavioral profiles of N-(4-chloro-2-phenoxyphenyl)-N-(2-isopropoxybenzyl)acetamide (DAA1097) and N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide (DAA1106), novel, selective agonists for the peripheral benzodiazepine receptor (PBR) were examined. DAA1097 and DAA1106 inhibited [3H]PK 11195 binding to crude mitochondrial preparations of rat whole brain, with IC50 values of 0.92 and 0.28 nM. Likewise, DAA1097 and DAA1106 inhibited [3H]Ro 5-4864 binding to the same mitochondrial preparation, with IC50 values of 0.64 and 0.21 nM. In contrast, DAA1097 and DAA1106 did not inhibit [3H]-flunitrazepam, the central benzodiazepine receptor (CBR) ligand, binding to membranes of rat whole brain (IC50>10,000nM). Oral administration of DAA1097 and DAA1106 had anxiolytic effects in the mouse light/dark exploration test and in the rat elevated plus- maze test. Oral administration of DAA1106, diazepam and buspirone but not DAA1097 significantly increased sleeping time in hexobarbital-induced anesthesia in mice. The order of potency of potentiation of hexobarbital anesthesia was diazepam> buspirone> DAA1106> DAA1097. Oral administration of DAA1097 and DAA1106 but not diazepam and buspirone did not affect spontaneous locomotor activity in mice. These findings indicate that DAA1097 and DAA1106 are PBR selective ligands with potent anxiolytic-like properties, in laboratory animals.  相似文献   

9.
《Life sciences》1995,57(11):1131-1140
Rats were submitted to 110 dB white noise exposure for 1, and 6 hours and brain α1, β1 and benzodiazepine receptor binding was evaluated with selective ligands. An increase in cerebral benzodiazepine receptor (CBR) concentration, without any significant change in affinity constant, occurred after the 6 h treatment; no change was observed in adrenergic receptor binding at any period of exposure. Both diazepam and clonazepara pre-treatment reversed the effects of noise on CBR binding, confirming a role of these receptors in the response to noise stress. Furthermore, these benzodiazepine agonists influenced the response of cardiac and aortic tissues, which are known to be changed by stress exposure. Diazepam and clonazepam pre-treatment protected cardiac tissue from the effects of 6h noise stress, and a potentiation of aortic responses was detected, although at different tunes of exposure. The differences between the responses of these peripheral tissues to benzodiazepine treatment suggest that the expression depends on the tissue examined and the period of exposure.  相似文献   

10.
Numerous previous studies of GABA(A) receptor ligands have suggested that GABA(A) receptor agonists must be zwitterionic and feature an intercharge separation similar to that of GABA (approx. 4.7-6A). In this communication we demonstrate that appropriately functionalized GABA amides are partial, full, or superagonists, despite their non-zwitterionic structure.  相似文献   

11.
Two classes of amino acid-derived heterocyclic progesterone receptor ligands were developed to address the metabolic issues posed by the dimethyl amide functionality of the lead compound (1). The tetrazole-derived ligands behaved as potent partial agonists, while the 1,2,4-triazole ligands behaved as potent full agonists.  相似文献   

12.
3-Ethoxy-beta-carboline binds with high affinity to benzodiazepine receptors in the central nervous system (Ki approximately equal to 10.1, 15.3, and 25.3 nM in rat cerebellum, cerebral cortex, and hippocampus, respectively). This compound has pharmacological actions reminiscent of benzodiazepine receptor partial inverse agonists such as FG 7142 and 3-carboethoxy-beta-carboline. Thus, while not a convulsant, 3-ethoxy-beta-carboline potentiated the convulsant actions of pentylenetetrazole in mice. Furthermore, this compound reduced both the time spent and the total entries in the open arms of an elevated plus maze and also inhibited stress-induced ulcer formation, effects that are also observed with benzodiazepine receptor inverse agonists. These findings suggest that 3-ethoxy-beta-carboline is a partial inverse agonist at benzodiazepine receptors which may prove useful for in vivo studies since it has a higher affinity for benzodiazepine receptors and better solubility than the commonly used partial inverse agonist FG 7142. Furthermore, 3-ethoxy-beta-carboline appears to be less vulnerable to metabolic degradation than ester analogs with a similar pharmacological profile such as 3-carboethoxy-beta-carboline.  相似文献   

13.
The effects of benzodiazepine antagonist Ro 15–1788, alone or with diazepam, were studied in mice on convulsions induced by pentylenetetrazol (PTZ). We found that Ro 15–1788 (1 mg/kg) was able to antagonize the anticonvulsive effects of diazepam (1 mg/kg), but also had, with submaximal doses of PTZ (65 mg/kg), its own anti-convulsive action. At very low doses (0.1 mg/kg), it even potentiated the anticonvulsive effects of diazepam (0.05 mg/kg). This dual action provides evidence for partial agonist properties of the antagonist Ro 15–1788.  相似文献   

14.
We report the creation of TCR partial agonists by the novel approach of manipulating the interaction between immunogenic peptide and MHC. Amino acids at MHC anchor positions of the I-E(k)-restricted hemoglobin (64-76) and moth cytochrome c (88-103) peptides were exchanged with MHC anchor residues from the low affinity class II invariant chain peptide (CLIP), resulting in antigenic peptides with altered affinity for MHC class II. Several low affinity peptides were identified as TCR partial agonists, as defined by the ability to stimulate cytolytic function but not proliferation. For example, a peptide containing methionine substitutions at positions one and nine of the I-E(k) binding motif acted as a partial agonist for two hemoglobin-reactive T cell clones (PL.17 and 3.L2). The identical MHC anchor substitutions in moth cytochrome c (88-103) also created a partial agonist for a mCC-reactive T cell (A.E7). Thus, peptides containing MHC anchor modifications mediated similar T cell responses regardless of TCR fine specificity or antigen reactivity. This data contrasts with the unique specificity among individual clones demonstrated using traditional altered peptide ligands containing substitutions at TCR contact residues. In conclusion, we demonstrate that altering the MHC anchor residues of the immunogenic peptide can be a powerful method to create TCR partial agonists.  相似文献   

15.
Adenosines bearing 5'-modification in conjunction with an N6-substituent have previously been shown to act as partial agonists at the A1 adenosine receptor. Our current work investigates the effect of modifying the 5'-position in conjunction with efficacious bicyclic and tricyclic N6-substituents. Several highly potent agonists for the A1 adenosine receptor were identified; however, all of these compounds behaved as full agonists. In keeping with previous reports, 5'-halogen and 5'-sulfide derivatives of N6-(endo-norborn-2-yl)adenosine were, in general, low nanomolar agonists of the A1 adenosine receptor. The known partial agonist, N6-cyclopentyl-5'-deoxy-5'-ethylthioadenosine (2), also behaved as a full agonist in our assay.  相似文献   

16.
C Belzung  R Misslin  E Vogel 《Life sciences》1988,42(18):1765-1772
The antagonistic effects of the benzodiazepine receptor inverse agonist beta-CCM (1 mg/kg) and of the partial inverse agonist RO 15-3505 (3 mg/kg) on the anxiolytic properties of ethanol (1 g/kg) in mice confronted with a light/dark choice procedure and with the staircase test were investigated. Both drugs reversed the effects of ethanol on some of the behavioral parameters, but beta-CCM alone elicited anxiogenic intrinsic effects. RO 15-3505 induced seizures in mice treated with a subconvulsant dose of pentylenetetrazole, the most efficient doses being 3 and 6 mg/kg. These data indicate that beta-CCM and RO 15-3505 can reverse some of the anxiolytic effects of ethanol, acting probably to oppose GABA function via the benzodiazepine receptor.  相似文献   

17.
In this report, we show that desensitization regulates ligand-independent, spontaneous activity of the human B2 bradykinin (BK) receptor, and the level of spontaneous receptor activity determines the action of the BK antagonists and partial receptor agonists NPC17731 and HOE140 as agonists or inverse agonists. Spontaneous receptor activity was monitored by measuring basal cellular phosphoinositide (PI) hydrolysis as a function of the density of the receptor in transiently transfected HEK293 cells. Minimal spontaneous activity of the wild-type B2 receptor was detected in these cells. Mutating a cluster of serines and threonines within the fourth intracellular domain of the receptor, which is critical for agonist-promoted desensitization, significantly increased the spontaneous receptor activity. BK, the natural B2 receptor ligand and, consequently, a full agonist, stimulated PI hydrolysis at high and low levels of spontaneous receptor activity. On the other hand, the partial agonists NPC17731 and HOE140 were stimulatory, or agonists, at the lower level of receptor activity but inhibitory, or inverse agonists, at the higher level of activity. These results show that receptors are desensitized in response to their spontaneous activity. Furthermore, these results, which refute traditional theories, show that the capacity of a drug to modulate a receptor response is not intrinsic to the drug but is also dependent on the cellular environment in which the drug acts.  相似文献   

18.
The mechanism by which agonist binding to an ionotropic glutamate receptor leads to channel opening is a central issue in molecular neurobiology. Partial agonists are useful tools for studying the activation mechanism because they produce full channel activation with lower probability than full agonists. Structural transitions that determine the efficacy of partial agonists can provide information on the trigger that begins the channel-opening process. The ligand-binding domain of AMPA receptors is a bilobed structure, and the closure of the lobes is associated with channel activation. One possibility is that partial agonists sterically block full lobe closure but that partial degrees of closure trigger the channel with a lower probability. Alternatively, full lobe closure may be required for activation, and the stability of the fully closed state could determine efficacy with the fully closed state having a lower stability when bound to partial relative to full agonists. Disulfide-trapping experiments demonstrated that even extremely low efficacy ligands such as 6-cyano-7-nitroquinoxaline-2,3-dione can produce a full lobe closure, presumably with low probability. The results are consistent the hypothesis that the efficacy is determined at least in part by the stability of the state in which the lobes are fully closed.  相似文献   

19.
Since its discovery 10 years ago the histamine H(4) receptor (H(4)R) has attracted attention as a potential drug target, for instance, for the treatment of inflammatory and allergic diseases. Potent and selective ligands including agonists are required as pharmacological tools to study the role of the H(4)R in vitro and in vivo. Many H(4)R agonists, which were identified among already known histamine receptor ligands, show only low or insufficient H(4)R selectivity. In addition, the investigation of numerous H(4)R agonists in animal models is hampered by species-dependent discrepancies regarding potencies and histamine receptor selectivities of the available compounds, especially when comparing human and rodent receptors. This article gives an overview about structures, potencies, and selectivities of various compounds showing H(4)R agonistic activity and summarizes the structure-activity relationships of selected compound classes.  相似文献   

20.
R A Shephard 《Life sciences》1987,40(25):2429-2436
A considerable body of biochemical and neurophysiological evidence implicates GABA in anxiety and in benzodiazepine action. The present article surveys the behavioral effects of GABA agonists and their interactions with drugs acting at the benzodiazepine receptor in animal anxiety paradigms. Certain GABA agonists, notably valproate, simulate many behavioral actions of benzodiazepines. Moreover, several behavioral studies of the interaction of GABA agonists with benzodiazepines support the hypothesis of a benzodiazepine receptor complex with one or more GABA, benzodiazepine and probably other binding sites. However, there are also a number of anomalous findings of GABA agonist action alone and in combination with benzodiazepines. It is argued that these paradoxical results can better be accounted for in terms of the receptor complex and the distribution of the drugs, rather than by suggesting that the anxiolytic actions of benzodiazepines are not mediated by GABA systems. The potential clinical usefulness of GABA agonists in anxiety is commented upon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号