首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ames mutagenicity and the concentration of the strong Ames mutagen 3-chloro-4-(dichloro-methyl)-5-hydroxy-2(5H)-furanone (MX) and its geometric isomer E-2-chloro-3-(dichloromethyl)-4-oxobutenoic acid (E-MX), derived from chlorination of humus, were determined in XAD extracts of tap water collected from 26 localities in Finland. The 23 tap waters treated with disinfectants gave a positive response in strain TA100. MX and E-MX were detected in all extracts exhibiting mutagenicity with the exception of 3 extracts of marginal activity. MX accounted for 15-57% (average 33%) of the observed mutagenicity. The concentration of E-MX was slightly lower than the corresponding concentration of MX. Linear correlations were observed between mutagenicity and concentration of MX and E-MX, with correlation coefficients of 0.894 for MX and 0.910 for E-MX.  相似文献   

2.
We determined the mutation spectra in Salmonella of four chlorinated butenoic acid analogues (BA-1 through BA-4) of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) and compared the results with those generated previously by us for MX and a related compound, MCF. We then considered relationships between the properties of mutagenic potency and mutational specificity for these six chlorinated butenoic acid analogues. In TA98, the three most potent mutagens, BA-3, BA-4, MX, and the organic extract, all induced large percentages of complex frameshifts (33-67%), which distinguish these agents from any other class of compound studied previously. In TA100, which has only GC sites for mutation recovery, >71% of the mutations induced by all of the agents were GC-->TA transversions. The availability of both GC and TA sites for mutation in TA104 resulted in greater distinctions in mutational specificity than in TA100. MX targeted GC sites almost exclusively (98%); the structurally similar BA-4 and BA-2 produced mutations at similar frequencies at both GC and AT sites; and the structurally similar BA-3 and BA-1 induced most mutations at AT sites (69%). Thus, large variations in structural properties influencing relative mutagenic potency appeared to be distinct from the more localized similar structural features influencing mutagenic specificity in TA104. Among a set of physicochemical properties examined for the six butenoic acids, a significant correlation was found between pK(a) and mutagenic potency in TA100, even when the unionized fraction of the activity dose was considered. In addition, a correlation in CLOGP for BA-1 to BA-4 suggested a role for bioavailability in determining mutagenic potency. These results illustrate the potential value of structural analyses for exploring the relationship between chemical structure and mutational mechanisms. To our knowledge, this is the first study in which such analyses have been applied to structural analogues for which both mutagenic potency and mutation spectra date were available.  相似文献   

3.
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) was detected by gas chromatography/mass spectrometry in drinking water samples from 3 locations in the U.S.A., and also in a chlorinated humic acid solution. MX appears to account for a significant proportion of the mutagenicity of these samples, as measured in the Ames test using strain TA100 without metabolic activation. Studies on recovery of MX from spiked water samples by XAD-2/8 resin adsorption/acetone elution indicated that sample acidification prior to resin adsorption was essential to the effective recovery of MX. The stability of MX in aqueous solution was pH and temperature dependent. At 23 degrees C the order of stability, based on persistence of mutagenic activity was found to be: pH 2 greater than pH 4 greater than pH 8 greater than pH 6. The half-life at pH 8 and 23 degrees C was 4.6 days. One of the degradation products has been tentatively identified as 2-chloro-3-(dichloromethyl)-4-oxo-2-butenoic acid, an open form of MX which appears to be in the "E" configuration. Overall, these results suggest that MX is formed during water chlorination as a result of reaction of chlorine with humic substances, and that a substantial fraction of the MX formed is likely to persist throughout the distribution system.  相似文献   

4.
5.
Extracts of three water samples--humic acid-enriched water-both peatland water and drinking water, both with and without chlorination were tested for mutagenicity at the tk locus in MCL-5 cells, a line of human B-lymphoblastoid cells that express cytochrome P450 enzymes and microsomal epoxide hydrolase. Our results show that chlorination caused a 5.5-fold increase (P<0.0001) in the mutagenicity of the humic acid-enriched water. The unchlorinated peatland water was mutagenic at the two highest doses (240 and 480 microg equivalent total organic carbon (TOC)/ml), possibly due to polycyclic aromatic hydrocarbons (PAH) that were measured in the peat. In contrast, the chlorinated peatland water was non-mutagenic at low doses, while at the highest dose (240 microg equivalent TOC/ml) the sample was so toxic that an insufficient number of cells survived treatment to allow plating. The chlorinated and unchlorinated drinking water were both non-mutagenic. 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a potent bacterial mutagen and chlorine-disinfection byproduct, was also tested in MCL-5 cells as well as in two other human B-lymphoblastoid cell-lines, AHH-1 TK+/- and h1A1v2 cells, which differ from each other and from MCL-5 cells in the amounts of cytochrome P450 enzymes they can express. MX was mutagenic to all three cell-lines, but there was no apparent correlation between cytochrome P450 enzyme expression and the mutagenicity of MX. Overall, our results show that samples of chlorinated humic acid-enriched water and MX, a model chlorine-disinfection byproduct, are moderately mutagenic to human cells.  相似文献   

6.
This study determines the effects of a water disinfection by-product, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (also known as mutagen X or MX) and chlorinated tap water on genomic instability in the yeast Saccharomyces cerevisiae. Tap water samples collected from Cherepovets (Russia) and Boston (MA, USA), were extracted using XAD absorption and ethyl acetate elution. MX and these water extracts were then tested for their ability to induce intrachromosomal recombination (deletions or DEL events), interchromosomal recombination (ICR) and aneuploidy (ANEU) using the yeast DEL assay. MX strongly induced DEL, ICR and ANEU events with a positive dose response and no threshold. Cherepovets tap water induced DEL and ICR events while evidence of ANEU induction was weak. The DEL induction potencies were stronger at higher concentrations. The estimated contribution of MX to DEL induction varied from over 50% at low concentrations (which is comparable to a typical contribution of MX to Ames mutagenicity of tap water) to between 2 and 10% at highest concentrations. For Boston tap water, there was only weak evidence of DEL induction and no evidence of ICR and ANEU induction. This is consistent with the results of other studies, which reported much higher concentrations of MX and stronger Ames mutagenicity in Cherepovets tap water than in Boston tap water.  相似文献   

7.
The mutagenic potential of aqueous, Total Oligomers Flavonoids (TOF), ethyl acetate, and methanol extracts as well as essential oil (EO) obtained from tubers ofCyperus rotundus L. was assessed by “Ames assay”, usingSalmonella tester strains TA98 and TA100, and “SOS chromotest” usingEscherichia coli PQ37 strain with and without an exogenous metabolic activation system (S9). None of the different extracts showed a mutagenic effect. Likewise, the antimutagenicity of the same extracts was tested using the “Ames test” and the “SOS chromotest”. Our results showed thatC. rotundus extracts have antimutagenic effects withSalmonella typhimurium TA98 and TA100 strains towards the mutagen Aflatoxin B1 (AFB1), as well as withE. coli PQ37 strain against AFB1 and nifuroxazide mutagens. A free radical scavenging test was used in order to explore the antioxidant capacity of the extracts obtained from the tubers ofC. rotundus. TOF, ethyl acetate and methanol extracts showed an important free radical scavenging activity towards the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical. These extracts showed IC50 values of respectively 5, 20 and 65 μg/ml. The beneficial effects of TOF, ethyl acetate, methanol and essential oil extracts ofC. rotundus have been assessed by antioxidant and antimutagenic activities.  相似文献   

8.
The mutagenic activity of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), which is formed during chlorination of drinking water, was effectively inhibited by sulfhydryl compounds such as cysteine, cysteamine, glutathione, dithiothreitol and 2-mercaptoethanol. Preincubation of 0.5 μg MX with 15 μg cysteine (molar ratio 1:37) in a phosphate buffer (pH 6.0–8.0) at 37°C for 15 min prior to exposure of bacterial cells depleted the mutagenic activity of MX. Together with the result showing a change in the UV spectra, it is suggested that sulfhydryl compounds inactivate MX by direct chemical interaction before MX induces DNA damage. On the other hand, a variety of antioxidants other than the sulfhydryl compounds showed no inhibitory effects. Investigation using structural analogs of cysteine revealed that the thiol moiety was indispensable for antimutagenic activity and the amino moiety appeared to enhance the MX-inactivating reaction of the SH group.  相似文献   

9.
《Mutation Research Letters》1995,346(3):181-186
This is the first report of clastogenic effects of chlorinated hydroxyfuranones (CHFs) in plants. Two byproducts of water chlorination, 3-chloro-4-(dichloromethyl)-5-hydroxy-2[5H]-furanone (MX) and 3,4-dichloro 5-hydroxy-2[5H]-furanone (MA) induced a dose dependent increase of micronuclei (MN) in pollen mother cells of Tradescantia when doses up to 100 μg MX and 500 μg MA were applied directly to the inflorescences. In contrast, exposure of the stems in aqueous solutions containing up to 1 mg/I MX and 10 mg/I MA did not cause a positive response.  相似文献   

10.
The capacity of 27 heterocyclic sulfur compounds to induce base-pair substitutions was investigated with Klebsiella pneumoniae ur- pro- and Salmonella typhimurium TA100 as test organisms. Among the compounds tested, all sulfur compounds with nitro groups and some thiazoles with an amino group were mutagenic. Among the nitrothiazoles, the most potent mutagen was niridazole, followed by 2-acetamido-5-nitrothiazole, 2-bromo-5-nitrothiazole, N-(5-nitrothiazol-2-yl)benzamide, and 2-amino-5-nitrothiazole. Of the nitrothiophenes, 2-nitrothiophene was more mutagenic than 3-nitrothiophene and 2,4-dinitrothiophene. 4-Nitroisothiazole was also mutagenic. Of the aminothiazoles, 2-amino-5-bromothiazole and 2-amino-5-chlorothiazole were mutagenic to both test organisms. With 2-amino-5-(p-nitrophenylsulfonyl)thiazole, a mutagenic action was only found with Salmonella typhimurium TA100, whereas 2-aminothiazole and 2-amino-4-methylthiazole were only mutagenic with Klebsiella pneumoniae. With the other 13 compounds, no mutagenic activity was observed. Of the coccidiostatics, 2-acetamido-5-nitrothiazole was also mutagenic on Escherichia coli K12 and Saccharomyces cerevisiae D4 but non-mutagenic on Salmonella typhimurium TA1530, TA1535, TA1537 and TA98, while 2-amino-5-nitrothiazole was mutagenic on Escherichia coli K12, Salmonella typhimurium TA1530, TA1535 and TA98, and non-mutagenic on strain TA1537 and on Saccharomyces cerevisiae D4.  相似文献   

11.
Two in vitro tests (Ames test and SOS chromotest), one for bacterial mutagenicity and one for primary DNA damage, were assayed to determine the genotoxic activity of 6 pesticides (atrazine, captafol, captan, chlorpyrifosmethyl, molinate and tetrachlorvinphos). Assays were carried out both in the absence and presence of S9 fractions of liver homogenate from rat (Sprague–Dawley) pretreated with Aroclor 1254. Captan and captafol were genotoxic on both the Ames test and the SOS chromotest. Comparisons with mutagenesis data in Salmonella indicated that the SOS assay detected as genotoxic the pesticides that were mutagenic on the Salmonella test. Non-genotoxic effects were not detected in vitro either in the Salmonella/microsome assay nor in the SOS chromotest when bacterial tester strains were exposed to atrazine, molinate, chlorpyrifosmethyl and tetrachlorvinphos in the absence or presence of S9 mix.  相似文献   

12.
The mutagenicity of the commonly used glutathione S-transferase substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) was investigated in the Salmonella mutagenicity assay. CDNB induced a concentration-dependent mutagenic response in Salmonella typhimurium strain TA98. Incorporation of an activation system derived from Aroclor 1254-induced rats did not influence mutagenic response. Under the same conditions DCNB failed to display mutagenic activity. The mutagenic activity of CDNB was attenuated in bacterial strains under-expressing nitroreductase or O-acetylase activity but, in contrast, it was exaggerated in an O-acetylase over-expressing strain. It is inferred that CDNB exhibits a mutagenic response following reduction of the nitro-group to the hydroxylamine, which is further acetylated to form the acetoxy derivative that presumably breaks down spontaneously to generate the nitrenium ion, the likely ultimate mutagen.  相似文献   

13.
A mutagen, 2-[2-(acetylamino)-4-[bis(2-methoxyethyl)amino]-5-methoxyphenyl]5-ami no-7-bromo-4-chloro-2H-benzotriiazole (PBTA-1), isolated from water of the Nishitakase River in Kyoto exhibits potent mutagenic activity in Salmonella typhimurium TA98 with S9 mix and has characteristic moieties, including bromo, chloro, acetylamino, bis(2-methoxyethyl)amino and primary amino groups on a 2-phenylbenzotriazole skeleton. The mutagenicities of PBTA-1, its congeners and five related 2-phenylbenzotriazoles were examined in S. typhimurium TA98 with S9 mix in order to elucidate the structure-activity relationships. The data obtained suggest that a primary amino group plays an essential role in the mutagenic activity as do aromatic amines including heterocyclic amines in cooked foods. The effect of planarity of the 2-phenylbenzotriazole ring was significant, and in addition, halogen groups of PBTA-1 influenced the enhancement of the mutagenic activity.  相似文献   

14.
Modulation of mutagenicity of various mutagens by lignin derivatives   总被引:3,自引:0,他引:3  
The effect of lignin on cytotoxicity, mutagenicity and SOS response induced by 4-nitroquinoline-N-oxide (4NQO), 3-(5-nitro-2-furyl)acrylic acid (5NFAA), 2-nitrofluorene (2NF) as well as hydrogen peroxide was investigated in bacterial assay systems, i.e. the Ames test with Salmonella typhimurium TA98, TA100, TA102 and the SOS chromotest with Escherichia coli PQ37. Lignin preparations obtained from beech wood significantly decreased the mutagenicity induced by 4NQO, 2NF and H(2)O(2). In the case of mutagenicity induced by 5NFAA the effect was lower. Antimutagenic properties of lignin samples tested were shown also by SOS chromotest where lignin inhibited the ability of both 4NQO and H(2)O(2) to induce the SOS response. Derivatives of lignin including those from soft and hard wood, as well as from annual plants differ in their efficiency to inhibit the induction of the SOS response. The modified lignins isolated from beech and spruce wood exhibit a high level of protection. Lignins from annual plants-corn cobs and straw-only marginally evoked an antimutagenic response, but their effect was increased by hydrothermic treatment of both annual plants. The results obtained indicate the prospective utilization of lignin preparations as additive in chemo-prevention. The antimutagenic effect of lignin samples varies with the method of isolation and modification, as well as with the genetic origin of the lignin.  相似文献   

15.
Aristolochic acid (1), a constituent of Aristolochia species, has been used for medicinal purposes since the Graeco-Roman period. Following the observation that the compound was mutagenic and carcinogenic, it was removed from pharmaceutical products. Consistent with previous reports, we have found that 1 serves as a direct-acting mutagen in Salmonella typhimurium strains TA100, TA102, TA1537 and TM677, but was not active in the nitroreductase-deficient strains TA98NR and TA100NR. However, aristolic acid (2), a compound that differs in structure only by the absence of the nitro group, was also found to be a direct-acting mutagen in Salmonella strains TA98, TA100, TA102, TA1537, and TM677, as well as strains TA98NR and TA100NR. Both compounds (1 and 2) were active mutagens when evaluated with cultured Chinese hamster ovary cells. Thus, in contrast to previous suggestions, the nitro group at position 10 is not required to induce a mutagenic response. Also, a series of structural relatives (the methyl esters of 1 and 2 (3 and 4, respectively), aristolochic acid-D (5), aristolactam (6), aristolactam A-II (7), and aristolactam-N-beta-D-glucoside (8)) were evaluated for mutagenic potential with Salmonella typhimurium strain TM677 and found to be inactive. Since compounds 3 and 4 were found to be active mutagens with Salmonella typhimurium strains TA98, TA100, TA102 and TA1537 (sufficient quantities of compounds 5-8 were not available for testing), differential sensitivity of the tester strains unrelated to mutagenic potential is suggested. Further, compounds 1, 2, and 6-8 were evaluated for potential to inhibit growth with cultured KB or P388 cells. P388 cells were substantially more sensitive, and compound 1 was the most active of the materials tested (ED5 = 0.58 microM). Compound 6 also demonstrated appreciable activity (ED50 = 4.2 microM), as did compound 8 (ED50 = 6.0 microM). It therefore appears that phenanthrene-ring substituents, in addition to the nitro group at position 10, serve important roles for biological potential. In considering the carcinogenic event induced by aristolochic acid, these functionalities should also be taken into account.  相似文献   

16.
Niclosamide is an anti-helminthic drug susceptible to being metabolized into a bacterial mutagen by the action of enzymes present in the S9 activation mixture. Additional results from genotoxic studies in rodents and humans suggest that the drug is absorbed from the gastrointestinal tract, and mutagenic metabolites are excreted both in the free form and as conjugated glucuronides. As in the case of other secondary amides, phase I metabolism of niclosamide may result in a hydrolytic cleavage of the amide bond, giving rise to 5-chlorosalicylic acid and 2-chloro-4-nitroaniline as the main metabolites. In this study, the mutagenicity of these compounds was tested using the Salmonella typhimurium assay. Bacterial mutagenicity tests with these 2 compounds reveal a non-mutagenic response with 5-chlorosalicylic acid and a mutagenic one with 2-chloro-4-nitroaniline. However, the mutagenic potency observed with this compound is lower than that of niclosamide. The role of nitroreduction in the activation of niclosamide and 2-chloro-4-nitroaniline was also investigated with the help of S. typhimurium strains TA98NR, YG1020, YG1021 and YG1024. The results show a pattern of response which is qualitatively similar for both compounds and this indicates that its mutagenicity depends on both nitroreduction and transacetylation.  相似文献   

17.
Mutagenic and SOS-inducing potential of 23 derivatives of fluorenone, phenanthrenequinone and biphenyl have been studied in tester strains of Salmonella typhimurium and in Escherichia coli strain PQ 37. 14 of these compounds revert the mutation hisD3052 (much less than -1 much greater than type), but none of them induce mutations in the strain TA 1535. Maximal mutagenic activity has been shown in strain TA 1538 for amide of 2,7-dinitrofluorenone-4-carbonic acid (580 revertants per nmol), 2,7-dinitrophenanthrenequinone (308 revertants per nmol), 2,4,7-trinitrophenanthrenequinone (306 revertants per nmol) and 2',4,4'-trinitrobiphenyl-2-carbonic acid (251 revertants per nmol). In plasmid-containing strain TA 98 the mutagenic potential of the compounds tested is lower than in the TA 1538 strain. It has been suggested that mutagenic activity of these compounds can be attributed to their acceptor properties, namely, the ability to form charge transfer complexes with DNA. SOS-inducing activity has been shown for 5 compounds, also positive in mutation induction. Mutagenic and SOS-inducing activities positively correlate in fluorenone derivatives. Among phenanthrenequinone derivatives, compounds with high mutagenic activity only can induce SOS response. None of the biphenyls tested induce SOS functions. The compounds giving the positive result in the SOS-chromotest have rigid co-planar structure.  相似文献   

18.
The chloroimide 3,3-dichloro-4-(dichloromethylene)-2,5-pyrrolidinedione, a tetrachloroitaconimide, is the principal mutagen produced by chlorination of simulated poultry chiller water. It is the second most potent mutagenic disinfection by-product of chlorination ever reported. Six of seven new synthetic analogs of this compound are direct-acting mutagens in Ames tester strain TA-100. Computed energies of the lowest unoccupied molecular orbital (E(LUMO)) and of the radical anion stability (DeltaH(f)(rad)-DeltaH(f)) from MNDO-PM3 for the chloroimides show a quantitative correlation with the Ames TA-100 bacterial mutagenicity values. The molar mutagenicities of these direct acting mutagenic imides having an exocyclic double bond fit the same linear correlation (lnM(m) vs. E(LUMO); lnM(m) vs. DeltaH(f)(rad)--DeltaH(f)) as the chlorinated 2(5H)-furanones, including the potent mutagen MX, 3-chloro-4-(dichloro-methyl)-5-hydroxy-2(5H)-furanone, a by-product of water chlorination and paper bleaching with chlorine. Mutagenicity data for related haloimides having endocyclic double bonds are also given. For the same number of chlorine atoms, the imides with endocyclic double bonds have significantly higher Ames mutagenicity compared to their structural analogs with exocyclic double bonds, but do not follow the same E(LUMO) or DeltaH(f)(rad)-DeltaH(f) correlation as the exocyclic chloroimides and the chlorinated 2(5H)-furanones.  相似文献   

19.
A new heterocyclic amine mutagen was isolated from a dry-heated reaction of the natural meat components creatine, glutamic acid and glucose. Heating creatine and glutamic acid alone had only one seventh of the Ames/Salmonella mutagenic activity of the glucose, creatine and glutamic acid mixture. The major mutagenic compound was purified by HPLC using the Ames/Salmonella test to guide the purification. The mutagen has a molecular weight of 244 and a composition of C12H12N4O2 as determined by high-resolution mass spectrometry. NMR and IR spectral data suggest the structure is a 2,6-diamino-3,4-dimethyl-7-oxo-pyrano[4,3-g]benzimidazole. Mutagenic activity in strains TA1538, TA98 and TA100, was approximately 7000, 5200, and 550 revertants per microgram, respectively. The formation of this mutagen from natural meat components suggests that it may be present in cooked food. The preferential formation of this mutagen with glucose shows that glucose can be important in dry-heated mutagen-forming reactions.  相似文献   

20.
Beer can inhibit the mutagenicity of the sanma-fish mutagen, 2-chloro-4-methylthiobutanoic acid (CMBA) in Salmonella typhimurium TA100 and TA1535. The antimutagenic component was isolated from beer and identified as glycine betaine, a compound known to be distributed widely in plants and animals including humans. Beer also contains components that interfere the antimutagenic action of glycine betaine. Glycine betaine seems to antagonize CMBA in a specific manner, since several other direct-acting mutagens tested were not subject to inhibition by glycine betaine. CMBA was stable in the presence of glycine betaine under neutral conditions. Since a treatment of Salmonella with glycine betaine before the bacteria was exposed to CMBA resulted in inhibition of the mutagenesis, the antimutagenic action of glycine betaine may be taking place inside the cells. These observations suggest that the mutagenic action of CMBA may be modified by the presence of both extracellular and intracellular glycine betaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号