首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All living cells respond to external stimuli and execute specific physiological responses through signal transduction pathways. Understanding the mechanisms controlling signalling pathways is important for diagnosing and treating diseases and for reprogramming cells with desired functions. Although many of the signalling components in the budding yeast Saccharomyces cerevisiae have been identified by genetic studies, many features concerning the dynamic control of pathway activity, cross‐talk, cell‐to‐cell variability or robustness against perturbation are still incompletely understood. Comparing the behaviour of engineered and natural signalling pathways offers insight complementary to that achievable with standard genetic and molecular studies. Here, we review studies that aim at a deeper understanding of signalling design principles and generation of novel signalling properties by engineering the yeast mitogen‐activated protein kinase (MAPK) pathways. The underlying approaches can be applied to other organisms including mammalian cells and offer opportunities for building synthetic pathways and functionalities useful in medicine and biotechnology.  相似文献   

2.
3.
Toll-like receptors (TLRs) recognize Mycobacterium tuberculosis (Mtb) or Mtb components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signalling cascades involved in the TLR-initiated immune response to mycobacterial infection. Although both TLR2 and TLR4 have been implicated in host interactions with Mtb, the relationship between specific mycobacterial molecules and various signal transduction pathways is not well understood. This review will discuss recent studies indicating critical roles for mycobacteria and mycobacterial components in regulation of mitogen-activated protein kinases and related signal transduction pathways that govern the outcome of infection and antibacterial defence. To better understand the roles of infection-induced signalling cascades in molecular pathogenesis, future studies are needed to clarify mechanisms that integrate the multiple signalling pathways that are activated by engagement of TLRs by both individual mycobacterial molecules and whole mycobacteria. These efforts will allow for the development of novel diagnostic and therapeutic modalities for tuberculosis that targets the intracellular signalling pathways permitting the replication of this nefarious pathogen.  相似文献   

4.
Embryonic development requires exquisite regulation of several essential processes, such as patterning of tissues and organs, cell fate decisions, and morphogenesis. Intriguingly, these diverse processes are controlled by only a handful of signalling pathways, and mis-regulation in one or more of these pathways may result in a variety of congenital defects and diseases. Consequently, investigating how these signalling pathways are regulated at the molecular level is essential to understanding the mechanisms underlying vertebrate embryogenesis, as well as developing treatments for human diseases. Here, we designed and performed a large-scale gain-of-function screen in Xenopus embryos aimed at identifying new regulators of MAPK/Erk, PI3K/Akt, BMP, and TGF-β/Nodal signalling pathways. Our gain-of-function screen is based on the identification of gene products that alter the phosphorylation state of key signalling molecules, which report the activation state of the pathways. In total, we have identified 20 new molecules that regulate the activity of one or more signalling pathways during early Xenopus development. This is the first time that such a functional screen has been performed, and the findings pave the way toward a more comprehensive understanding of the molecular mechanisms regulating the activity of important signalling pathways under normal and pathological conditions.  相似文献   

5.
Cancer being the leading cause of mortality has become a great threat worldwide. Current cancer therapeutics lack specificity and have side effects due to a lack of understanding of the molecular mechanisms and signalling pathways involved in carcinogenesis. In recent years, researchers have been focusing on several signalling pathways to pave the way for novel therapeutics. The PTEN/PI3K/AKT pathway is one of the important pathways involved in cell proliferation and apoptosis, leading to tumour growth. In addition, the PTEN/PI3K/AKT axis has several downstream pathways that could lead to tumour malignancy, metastasis and chemoresistance. On the other hand, microRNAs (miRNAs) are important regulators of various genes leading to disease pathogenesis. Hence studies of the role of miRNAs in regulating the PTEN/PI3K/AKT axis could lead to the development of novel therapeutics for cancer. Thus, in this review, we have focused on various miRNAs involved in the carcinogenesis of various cancer via the PTEN/PI3K/AKT axis.  相似文献   

6.
It is well established that a family of dual-specificity MAP kinase phosphatases (MKPs) play key roles in the regulated dephosphorylation and inactivation of MAP kinase isoforms in mammalian cells and tissues. MKPs provide a mechanism of spatiotemporal feedback control of these key signalling pathways, but can also mediate crosstalk between distinct MAP kinase cascades and facilitate interactions between MAP kinase pathways and other key signalling modules. As our knowledge of the regulation, substrate specificity and catalytic mechanisms of MKPs has matured, more recent work using genetic models has revealed key physiological functions for MKPs and also uncovered potentially important roles in regulating the pathophysiological outcome of signalling with relevance to human diseases. These include cancer, diabetes, inflammatory and neurodegenerative disorders. It is hoped that this understanding will reveal novel therapeutic targets and biomarkers for disease, thus contributing to more effective diagnosis and treatment for these debilitating and often fatal conditions.  相似文献   

7.
Deregulation of innate immune signalling and cell death form the basis of most human disease pathogenesis. Inhibitor of APoptosis (IAP) protein-family members are frequently overexpressed in cancer and contribute to tumour cell survival, chemo-resistance, disease progression and poor prognosis. Although best known for their ability to regulate caspases, IAPs also influence ubiquitin-dependent pathways that modulate innate immune signalling by activation of NF-κB. Recent advances in our understanding of the molecular mechanisms through which IAPs influence cell death and innate immune responses have provided new insights into novel strategies for treatment of cancer. In this review we discuss our current understanding of IAP-mediated NF-κB signalling, as well as elaborate on unexpected insights into the involvement of IAPs in regulating the 'Ripoptosome', a novel intrinsic cell death-inducing platform. We propose an evolutionarily conserved concept whereby IAPs function as guardians of killer platforms such as the apoptosome in Drosophila and the Ripoptosome in mammals.  相似文献   

8.
Heterotrimeric G‐proteins are complexes that regulate important signalling pathways essential for growth and development in both plants and animals. Although plant cells are composed of the core components (Gα, Gβ and Gγ subunits) found in animal G‐proteins, the complexities of the architecture, function and signalling mechanisms of those in animals are dissimilar to those identified in some plants. Current studies on plant G‐proteins have improved knowledge of the essential physiological and agronomic properties, which when harnessed, could potentially impact global food security. Extensive studies on the molecular mechanisms underlying these properties in diverse plant species will be imperative in improving our current understanding of G‐protein signalling pathways involved in plant growth and development. The advancement of G‐protein signalling networks in distinct plant species could significantly aid in better crop development. This review summarizes current progress, novel discoveries and future prospects for this area in potential crop improvement.  相似文献   

9.
10.
G protein-coupled receptors (GPCRs) represent the largest family of approved therapeutic targets. Ligands stimulating these receptors specifically activate multiple signalling pathways that induce not only the desired therapeutic response, but sometimes untolerated side effects that limit their clinical use. The diversity in signalling induced by each ligand could be considered a viable path for improving this situation. Biased agonism, which offers the promise of identifying pathway-selective drugs has been proposed as a means to exploit this opportunity. However, identifying biased agonists is not an easy process and quantifying ligand bias for a given signalling pathway requires careful consideration and control of several confounding factors. To date, the molecular mechanisms of biased signalling remain unclear and known theories that constitute our understanding of the mechanisms underlying therapeutic and side effects are still being challenged, making the strategy of selecting promising potential drugs more difficult. This special issue summarizes the latest advances in the discovery and optimization of biased ligands for different GPCRs. It also focuses on identifying novel insights into the field of biased agonism, while at the same time, highlighting the conceptual and experimental limitations of that concept for drug discovery. This aims to broaden our understanding of the signalling induced by the various identified biased agonists and provide perspectives that could straighten our path towards the development of more effective and tolerable therapeutics.  相似文献   

11.
12.
Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end‐stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia‐induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia‐inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia‐induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF‐β, Notch, PKC/ERK, PI3K/Akt, NF‐κB, Ang II/ROS and microRNAs. Roles of molecules such as IL‐6, IL‐18, KIM‐1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia‐responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.  相似文献   

13.
14.
Kurz CL  Tan MW 《Aging cell》2004,3(4):185-193
The free-living soil nematode Caenorhabditis elegans is a versatile model for the study of the genetic regulation of aging and of host-pathogen interactions. Many genes affecting multiple processes, such as neuroendocrine signalling, nutritional sensing and mitochondrial functions, have been shown to play important roles in determining the lifespan of C. elegans. The DAF-2-mediated insulin signalling pathway is the major pathway that regulates aging in this nematode and this role appears universal; neuroendrocrine signalling also affects aging in Drosophila and mice. Recent studies have shown that the innate immune function in C. elegans is modulated by signalling from the TGF-beta-like, the p38 MAPK and the DAF-2 insulin pathways. The requirement for the DAF-2 pathway in modulating aging and immunity suggests that these processes may be linked at the molecular level. It is well known that as humans age, immunosenescence occurs in which there is a general degradation of immune efficiency. However, the molecular mechanisms involved in this process remain unclear. In this review, we discuss the molecular mechanisms that modulate aging and immune response and attempt to suggest molecular links between these two processes.  相似文献   

15.
Pain genes     
Foulkes T  Wood JN 《PLoS genetics》2008,4(7):e1000086
Pain, which afflicts up to 20% of the population at any time, provides both a massive therapeutic challenge and a route to understanding mechanisms in the nervous system. Specialised sensory neurons (nociceptors) signal the existence of tissue damage to the central nervous system (CNS), where pain is represented in a complex matrix involving many CNS structures. Genetic approaches to investigating pain pathways using model organisms have identified the molecular nature of the transducers, regulatory mechanisms involved in changing neuronal activity, as well as the critical role of immune system cells in driving pain pathways. In man, mapping of human pain mutants as well as twin studies and association studies of altered pain behaviour have identified important regulators of the pain system. In turn, new drug targets for chronic pain treatment have been validated in transgenic mouse studies. Thus, genetic studies of pain pathways have complemented the traditional neuroscience approaches of electrophysiology and pharmacology to give us fresh insights into the molecular basis of pain perception.  相似文献   

16.
The combination of mutational and molecular studies has shed light on the role of reactive oxygen intermediates and programmed cell death in cereal disease resistance mechanisms. Rice Rac1 and barley Rar1 represent conserved disease resistance signalling genes, which may have related functions in animals. The analysis of non-pathogenic Magnaporthe grisea mutants may provide novel tools to study host defence pathways.  相似文献   

17.
Vascular smooth muscle cells (VSMCs) proliferation is involved in vascular atherosclerosis and restenosis. Recent studies have demonstrated that lipopolysaccharide (LPS) promotes VSMCs proliferation, but the signalling pathways which are involved are not completely understood. The purpose of this review was to summarize the existing knowledge of the role and molecular mechanisms involved in controlling VSMCs proliferation stimulated by LPS and mediated by toll‐like receptor 4 (TLR4) signalling pathways. Moreover, the potential inhibitors of TLR4 signalling for VSMCs proliferation in proliferative vascular diseases are discussed.  相似文献   

18.
The interaction of cytokinin with other signals   总被引:13,自引:0,他引:13  
Cytokinins are important signalling molecules in plants, and recent studies have begun to shed light on the molecular mechanisms underlying their biosynthesis and response pathways. However, from the time of their discovery, it has been clear that cytokinins interact with other signals to regulate plant growth and development. Herein the interaction of cytokinin with three other signals: light, ethylene, and auxin is discussed. The interaction between light and cytokinin signalling, highlighted by recent analysis of cytokinin signalling mutants is reviewed. A discussion of another aspect of cytokinin cross-talk, its induction of ethylene biosynthesis in etiolated Arabidopsis seedlings, and recent studies that have begun to elucidate the mechanism underlying this regulation is also presented. Finally, there is a brief review of the interaction of auxin and cytokinin, and present novel expression profiling data of Arabidopsis seedlings treated with combinations of these two hormones, which provide insight into this interaction.  相似文献   

19.
Cellular information processing requires the coordinated activity of a large network of intracellular signalling pathways. Cross-talk between pathways provides for complex non-linear responses to combinations of stimuli, but little is known about the density of these interactions in any specific cell. Here, we have analysed a large-scale survey of pathway interactions carried out by the Alliance for Cellular Signalling (AfCS) in RAW 264.7 macrophages. Twenty-two receptor-specific ligands were studied, both alone and in all pairwise combinations, for Ca2+ mobilization, cAMP synthesis, phosphorylation of many signalling proteins and for cytokine production. A large number of non-additive interactions are evident that are consistent with known mechanisms of cross-talk between pathways, but many novel interactions are also revealed. A global analysis of cross-talk suggests that many external stimuli converge on a relatively small number of interaction mechanisms to provide for context-dependent signalling.  相似文献   

20.
Life is a journey: a genetic look at neocortical development   总被引:1,自引:0,他引:1  
Although the basic principles of neocortical development have been known for quite some time, it is only recently that our understanding of the molecular mechanisms that are involved has improved. Such understanding has been facilitated by genetic approaches that have identified key proteins involved in neocortical development, which have been placed into signalling pathways by molecular and cell-biological studies. The challenge of current research is to understand the manner in which these various signalling pathways are interconnected to gain a more comprehensive picture of the molecular intricacies that govern neocortical development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号