首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The invasion-inducing T-lymphoma invasion and metastasis 1 (Tiam1) protein functions as a guanine nucleotide exchange factor (GEF) for the small GTPase Rac1. Differentiation-dependent expression of Tiam1 in the developing brain suggests a role for this GEF and its effector Rac1 in the control of neuronal morphology. Here we show that overexpression of Tiam1 induces cell spreading and affects neurite outgrowth in N1E-115 neuroblastoma cells. These effects are Rac-dependent and strongly promoted by laminin. Overexpression of Tiam1 recruits the α6β1 integrin, a laminin receptor, to specific adhesive contacts at the cell periphery, which are different from focal contacts. Cells overexpressing Tiam1 no longer respond to lysophosphatidic acid– induced neurite retraction and cell rounding, processes mediated by Rho, suggesting that Tiam1-induced activation of Rac antagonizes Rho signaling. This inhibition can be overcome by coexpression of constitutively active RhoA, which may indicate that regulation occurs at the level of Rho or upstream. Conversely, neurite formation induced by Tiam1 or Rac1 is further promoted by inactivating Rho. These results demonstrate that Rac- and Rho-mediated pathways oppose each other during neurite formation and that a balance between these pathways determines neuronal morphology. Furthermore, our data underscore the potential role of Tiam1 as a specific regulator of Rac during neurite formation and illustrate the importance of reciprocal interactions between the cytoskeleton and the extracellular matrix during this process.  相似文献   

2.
By examining microtubule regrowth using immunofluorescence with antibody to tubulin, we have studied the structure and intracellular localization of microtubule initiation sites in undifferentiated and differentiated mouse neuroblastoma cells. The undifferentiated cells are round and lack cell processes. They contain an average of 12 initiation sites per cell. Each of these sites, which are located near the cell nucleus, initiates the growth of several microtubules in a radial formation. In contrast to the undifferentiated cells, neuroblastoma cells stimulated to differentiate by serum deprivation are asymmetrical, containing one or two very long neurites. These cells have a single, large microtubule initiation center which can be visualized not only by immunofluorescence but by phase-contrast and differential interference microscopy as well. The initiation site measures 3-4 mu in diameter and is located in the cell body along a line defined by the neurite. During cell differentiation, the large initiation, the large initiation center seems to be formed by the aggregation of many smaller sites. This process procedes neurite extension by about 24 hr. The growth of microtubules from this center appears to be highly oriented, since most microtubules initially grow into the neurite processes rather than into the cell interior. Thus major changes in the structure and location of microtubule initiation sites occur during the differentiation of neuroblastoma cells. Similar changes are likely to be involved in alterations in the morphology of other cell types.  相似文献   

3.
Incorporation of 5-bromodeoxyuridine (BUdR) or 5-iododeoxyuridine (IUdR) into the chromosomal DNA of Chinese hamster ovary (CHO) cells during two rounds of replication causes sister chromatids to be differentiated so that they can be discriminated from one another by staining and morphology. Chromatids that contain BUdR or IUdR in both DNA strands stain lighter and are less condensed than their sister chromatids with only unifilar substitution. The halogenated pyrimidine nucleosides also induce sister chromatid exchanges that can be detected without autoradiography. The frequency of these exchanges is markedly increased by exposing the cells to light flashes.  相似文献   

4.
Dynamics of behaviour during neuronal morphogenesis in culture   总被引:1,自引:0,他引:1  
We report a developmental sequence in the type and frequency of behaviours of neurons differentiating in vitro. We characterised these changes with extensive analysis of time-lapse sequences from both the continuing cell line pheochromocytoma PC12 and primary mixed cell culture of cat and mouse central nervous system. PC12 cells activated by nerve growth factor (NGF) differentiate in a uniform and synchronous manner. This allowed the first quantification of changes in different neuron behaviours during morphogenesis. Shortly after NGF activation, PC12 cells are highly labile in morphology and exhibit a large variety of morphological behaviours. During the first week of differentiation, the frequency of these behaviours declines, and gross morphology becomes more stable. The frequency of neurite initiation after 1 week in NGF is one-seventh what it was after 2 days in NGF. Over the same period, neurite retraction declines to one-third, and somal migration ceases altogether. Growth-cone activity does not decline during development. These behaviour changes correlate with published data on the differentiation of the neurite cytoskeleton. A qualitatively similar ontogeny was noted in the differentiation of CNS neurons in mixed cell culture. Major differences occur in the relative timing of changes in behaviours. Mature, stable morphology is not detected in these cultures until 7 weeks in vitro.  相似文献   

5.
The adhesion of eosinophils to nerve cells and the subsequent release of eosinophil products may contribute to the pathogenesis of conditions such as asthma and inflammatory bowel disease. In this study we have separately examined the consequences of eosinophil adhesion and degranulation for nerve cell morphology and development. Eosinophils induced neurite retraction of cultured guinea pig parasympathetic nerves and differentiated IMR32 cholinergic neuroblastoma cells. Inhibition of eosinophil adhesion to IMR32 cells attenuated this retraction. Eosinophil adhesion to IMR32 cells led to tyrosine phosphorylation of a number of nerve cell proteins, activation of p38 MAP kinase, and generation of neuronal reactive oxygen species (ROS). Inhibition of tyrosine kinases with genistein prevented both the generation of ROS in the nerve cells and neurite retraction. The p38 MAP kinase inhibitor SB-239063 prevented neurite retraction but had no effect on the induction of ROS. Thus eosinophils induced neurite retraction via two distinct pathways: by generation of tyrosine kinase-dependent ROS and by p38 MAP kinase. Eosinophils also prevented neurite outgrowth during differentiation of IMR32 cells. In contrast to their effect on neurite retraction, this effect was mimicked by medium containing products released from eosinophils and by eosinophil major basic protein. These results indicate that eosinophils modify the morphology of nerve cells by distinct mechanisms that involve adhesion and released proteins.  相似文献   

6.
Nerve growth factor (NGF)-induced neurite maturation in PC12D cells involves neuritogenesis and neurite outgrowth. Actions of compounds affecting the neurite maturation are sometimes invisible behind the individually variable events in nature even in the clonal population. In this study, we designed a time-lapse imaging system to determine the timing of each event in individual PC12D cells. To examine the system, we analyzed the effect of staurosporine on the neurite maturation in PC12D cells. By using the system, we obtained four event timing data sets (stimulation by NGF with and without staurosporine at the concentrations of 0.01, 0.1, and 1 microM). A permutation test of these data sets revealed that staurosporine caused an early induction of neurite outgrowth during neurite maturation in PC12D cells. These results suggest that the time-lapse imaging system to determine the timing of each event in individual cells can provide a novel insight into features of a cell mass by single-cell analysis and is expected to be utilized for profiling of compounds that can serve as candidate drugs.  相似文献   

7.
Neuronal differentiation of NTE-deficient embryonic stem cells   总被引:3,自引:0,他引:3  
Organophosphates induce neurological disorders. One of the enzymes inhibited by these compounds is neuropathy target esterase (NTE). In vitro, inhibition of NTE activity by organophosphates is correlated with inhibition of neurite initiation and reduction of neurite length, supporting the hypothesis that organophosphate-induced neurological disorders are caused by inhibition of NTE activity. However, there is no direct evidence for the involvement of NTE in organophosphate-induced impairment of neurites in vitro. To examine the role of NTE, we have generated NTE-deficient mouse embryonic stem cells. These cells can differentiate into neuron-like cells. Although NTE-deficient cells exhibited a delay in neurite initiation in vitro, both the proportion of neuron-like cells which initiated neurites and the elongation of these neurites occurred at the normal rate. These results demonstrate that NTE activity is not required for neurite initiation or elongation per se, but is essential for the optimal rate of neurite initiation.  相似文献   

8.
Abstract: Genistein and other inhibitors of protein tyrosine kinases were examined for effects on neurite elongation and growth cone morphology in the rat PC12 pheochromocytoma cell line. Genistein increased the rate of neurite elongation in PC12 cells grown on a collagen/polylysine substratum after priming with nerve growth factor (NGF), but had no effect on undifferentiated cells. Steady-state levels of phosphotyrosine-modified proteins (105, 59, 52, and 46 kDa) were reduced in NGF-primed cells by genistein treatment. The target of genistein action did not appear to be the NGF receptor/ trk tyrosine kinase because the presence of NGF in cultures of NGF-primed cells was not necessary for genistein-stimulated neurite outgrowth. The tyrosine kinase inhibitors tyrphostin RG508964 and herbimycin A also increased the rate of neurite elongation in NGF-primed PC12 cells. Video-enhanced differential interference contrast microscopy revealed that growth cones of genistein-treated cells had less complex morphologies and were less dynamic than untreated cells, with short filopodia restricted to the leading edge, unlike untreated cells whose growth cones exhibited longer, more numerous filopodia and lamellipodia, which remodeled continuously. These results suggest that protein tyrosine kinase activity in PC12 cells negatively regulates neurite outgrowth and directly or indirectly affects growth cone morphology.  相似文献   

9.
This paper provides the first quantitative cladistic analysis of linyphiid morphology. Classical and novel homology hypotheses for a variety of character systems (male and female genitalia, somatic morphology, spinneret silk spigot morphology, etc.) are critically examined and studied within a phylogenetic context. Critical characters have been illustrated. A sample of linyphiid taxa (nine genera in four subfamilies), five species of Pimoa (Pimoidae), and two other araneoid families (Tetragnathidae and Araneidae, represented by Tetragnatha and Zygiella , respectively) were used to study the implications of the phylogeny of Pimoidae for the systematics of linyphiids. The phylogenetic relationships of these 16 exemplar taxa, as coded for the 47 characters studied, were analysed using numerical cladistic methods. In the preferred cladogram Pimoidae and Linyphiidae are sister groups, Stemonyphantinae are sister group to the remaining linyphiids, and Mynogleninae are sister group to the clade composed of Erigoninae plus Linyphiinae. These results agree with the relationships recently proposed by Wunderlich, except by finding erigonines as the sister group to linyphiines rather than to mynoglenines.  相似文献   

10.
During neurite initiation microtubules align to form a tight bundle and actin filaments reorganize to produce a growth cone. The mechanisms that underlie these highly coordinated cytoskeletal rearrangements are not yet fully understood. Recently, various levels of coordination between the actin- and microtubule-based cytoskeletons have been observed during cellular migration and morphogenesis, processes that share some similarities to neurite initiation. Direct, physical association between both cytoskeletons has been suggested, because microtubules often preferentially grow along actin bundles and transiently target actin-rich adhesion complexes. We propose that such physical association might be involved in force-based interactions and spatial organization of the two networks during neurite initiation as well. In addition, many signaling cascades that affect actin filaments are also involved in the regulation of microtubule dynamics, and vice versa. Although several candidates for mediating these effects have been identified in non-neuronal cells, the general mechanism is still poorly understood. In neurons certain plakins and neuron-specific microtubule associated proteins (MAPs), like MAP1B and MAP2, which can bind to both microtubules and F-actin, are promising candidates to play key roles in the specific cytoskeletal rearrangements controlling the transition from an undifferentiated state to neurite-bearing morphology. Here we review the effects of MAPs on microtubules and actin, as well as the coordination of both cytoskeletons during neurite initiation.  相似文献   

11.
Epidermal growth factor (EGF)-responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self-renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF-responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF-generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain-derived neurotrophic factor (BDNF) (5 ng in 0.5 microL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF-responsive stem cell-derived neurons possess limited intrinsic capability for long-distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF-responsive stem cell-derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF.  相似文献   

12.
Sun Y  Kim NH  Yang H  Kim SH  Huh SO 《Molecules and cells》2011,31(5):483-489
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects, including rapid neurite retraction and cell migration. Alterations in cell morphology, including neurite retraction, in neurodegenerative disorders such as Alzheimer's disease involve hyperphosphorylation of the cytoskeletal protein tau. Since LPA has been shown to induce neurite retraction in various cultured neural cells and the detailed underlying molecular mechanisms have not yet been elucidated, we investigated whether LPA induced neurite retraction through taumediated signaling pathways in differentiated neuroblastoma cells. When Neuro2a cells differentiated with retinoic acid (RA) were exposed to LPA, cells exhibited neurite retraction in a time-dependent manner. The retraction of neurites was accompanied by the phosphorylation of tau. The LPA-induced neurite retraction and tau phosphorylation in differentiated Neuro2a cells were significantly abolished by the glycogen synthase kinase-3β (GSK-3β) inhibitor lithium chloride. Interestingly, the LPA-stimulated tau phosphorylation and neurite retraction were markedly prevented by the administration of H89, an inhibitor of both cyclic-AMP dependent protein kinase (PKA) and cyclic-AMP response element-binding protein (CREB). Transfection of the dominant-negative CREBs, K-CREB and A-CREB, failed to prevent LPA-induced tau phosphorylation and neurite retraction in differentiated Neuro2a cells. Taken together, these results suggest that GSK-3β and PKA, rather than CREB, play important roles in tau phosphorylation and neurite retraction in LPA-stimulated differentiated Neuro2a cells.  相似文献   

13.
Advanced glycation end products (AGEs) result from non-enzymatic glycation of proteins and cause cellular oxidative stress in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner. Due to these effects, AGEs are implicated as a causal factor in diabetic complications. Several antioxidants, including vitamin E, improve cell viability and diminish markers of oxidative damage in cells exposed to AGEs. However, vitamin E has been studied in cell culture systems with primary focus on apoptosis and lipid peroxidation, while its influences on AGE-induced protein and DNA oxidation, intracellular antioxidant status and cell morphology remain largely unknown. Here, we verify the suppression of AGE-induced cell death and lipid peroxidation by 200μM α-tocopherol in SH-SY5Y cells. We report the partial inhibition of DNA oxidation and a decrease in protein carbonyl formation by α-tocopherol with no effects on intracellular GSH concentrations. We observed that 2mM N-acetyl cysteine (NAC) also had a suppressive effect on DNA and protein oxidation, but unlike α-tocopherol, it caused a marked increase in intracellular GSH. Finally, we compared the ability of both antioxidants to maintain neurites in SH-SY5Y cells and found that α-tocopherol had no effect on neurite loss due to AGEs, while NAC fully maintained cell morphology. Thus, while α-tocopherol suppressed AGE-induced macromolecule damage, it was ineffective against neurite degeneration. These results may implicate thiol oxidation and maintenance as a major regulator of neurite degeneration in this model.  相似文献   

14.
Rho GTPases and their regulators in neuronal functions and development   总被引:2,自引:0,他引:2  
Koh CG 《Neuro-Signals》2006,15(5):228-237
Neurons are specialized cell types which send out processes in order to communicate with other cells, which can be immediate neighbors or whose cell bodies are far distant. Neuronal morphology as in all cells is determined in large part through the regulation of the cytoskeleton. One of the key regulators of the actin cytoskeleton is the Rho family of GTPases. The Rho GTPases function as molecular switches to turn on or off downstream biochemical pathways depending on the stimuli. Their activities and their regulation are controlled by many other proteins such as the guanine nucleotide exchange factors and the GTPase-activating proteins. The activities of some of the Rho family members are reported to be antagonistic to one another. In general, Rac and Cdc42 promote neurite outgrowth while RhoA stimulates retraction. The balance of these opposing activities of the different Rho GTPases is crucial for the morphology and function of the neurons.  相似文献   

15.
Specification of cell morphology by endogenous determinants   总被引:9,自引:8,他引:1       下载免费PDF全文
We are studying the mechanisms by which cells elaborate their differentiated morphologies. Here we discuss one aspect of this issue: the specification of the detailed shape of individual cells. We describe an experimental system in which endogenous determinants of morphology are expressed. These determinants originally were detected in the morphological relationships between sister neuroblastoma cells. Approaches to analyzing these relationships are presented. The properties and behavior of the endogenous determinants have been partially characterized by further experiments, which are also described. The significance and the prospects for further analysis of our findings are discussed.  相似文献   

16.
Frank Solomon 《Cell》1980,21(2):333-338
The detailed neurite morphologies of neuroblastoma cells can be specified by heritable information. This paper reports an investigation into how that information is stored. Cells with neurites are incubated with the microtubule-depolymerizing drug Nocodazole. The neurites retract and the cell bodies round up. The neurites reextend when the drug is removed. 58% of all cells recapitulate their original neurite morphology in detail. The same percentage of recapitulation is observed among a subset of the cells, about half the population, which move across the substratum during retraction and reextension. The results suggest that the storage of morphological determinants survives an interruption in their expression. In addition, reexpression of specific morphology does not require external cues or maintenance of the overall geometry of the cytoskeleton.  相似文献   

17.
Cell morphogenesis requires dynamic reorganization of the actin cytoskeleton, a process that is tightly regulated by the Rho family of small GTPases. These GTPases act as molecular switches by shuttling between their inactive GDP-bound and active GTP-bound forms. Here we show that Nir2, a novel protein related to Drosophila retinal degeneration B (RdgB), markedly affects cell morphology through a novel Rho-inhibitory domain (Rid) which resides in its N-terminal region. Rid exhibits sequence homology with the Rho-binding site of formin-homology (FH) proteins and leads to an apparent loss of F-actin staining when ectopically expressed in mammalian cells. We also show that Rid inhibits Rho-mediated stress fiber formation and lysophosphatidic acid-induced RhoA activation. Biochemical studies demonstrated that Nir2, via Rid, preferentially binds to the inactive GDP-bound form of the small GTPase Rho. Microinjection of antibodies against Nir2 into neuronal cells markedly attenuates neurite extension, whereas overexpression of Nir2 in these cells attenuates Rho-mediated neurite retraction. These results implicate Nir2 as a novel regulator of the small GTPase Rho in actin cytoskeleton reorganization and cell morphogenesis.  相似文献   

18.
The neuropeptide secretoneurin (SN) is an endoproteolytic product of the chromogranin secretogranin II. We investigated the effects of SN on the differentiation of immature cerebellar granule cells derived from the external granular layer (EGL). Secretoneurin caused concentration-dependent increases in neurite outgrowth, reflecting differentiation. The maximum effect was reached at a concentration of 100 nm SN. Secretoneurin immunoneutralization using specific antiserum significantly decreased neurite outgrowth; however, neurite morphology was altered. An affinity chromatography-purified antibody significantly inhibited the outgrowth response to SN (p < 0.001) without altering the morphology. Binding studies suggest the existence of specific G-protein-coupled receptors on the surface of monocytes that recognize SN. Assuming that SN promotes neurite outgrowth in EGL cells by acting through a similar G-protein-coupled mechanism, we treated SN-stimulated EGL cultures with pertussis toxin. Exposure to pertussis toxin (0.1 micro g/mL) showed a significant inhibition of the SN-induced outgrowth. To establish a second messenger pathway we used the protein kinase C inhibitor staurosporine. We found that EGL cell viability was not enhanced following chronic SN treatment for 24 h. These data indicate that SN is a novel trophic substance that can affect cerebellar maturation, primarily by accelerating granule cell differentiation through a signalling mechanism that is coupled to pertussis toxin-sensitive G-proteins.  相似文献   

19.
Advanced glycation end products (AGEs) result from non-enzymatic glycation of proteins and cause cellular oxidative stress in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner. Due to these effects, AGEs are implicated as a causal factor in diabetic complications. Several antioxidants, including vitamin E, improve cell viability and diminish markers of oxidative damage in cells exposed to AGEs. However, vitamin E has been studied in cell culture systems with primary focus on apoptosis and lipid peroxidation, while its influences on AGE-induced protein and DNA oxidation, intracellular antioxidant status and cell morphology remain largely unknown. Here, we verify the suppression of AGE-induced cell death and lipid peroxidation by 200 μM α-tocopherol in SH-SY5Y cells. We report the partial inhibition of DNA oxidation and a decrease in protein carbonyl formation by α-tocopherol with no effects on intracellular GSH concentrations. We observed that 2 mM N-acetyl cysteine (NAC) also had a suppressive effect on DNA and protein oxidation, but unlike α-tocopherol, it caused a marked increase in intracellular GSH. Finally, we compared the ability of both antioxidants to maintain neurites in SH-SY5Y cells and found that α-tocopherol had no effect on neurite loss due to AGEs, while NAC fully maintained cell morphology. Thus, while α-tocopherol suppressed AGE-induced macromolecule damage, it was ineffective against neurite degeneration. These results may implicate thiol oxidation and maintenance as a major regulator of neurite degeneration in this model.  相似文献   

20.
Epidermal growth factor (EGF)–responsive stem cells from both developing and adult central nervous system (CNS) can be expanded and induced to differentiate into neurons and glia in vitro. Because of their self‐renewal and multipotent properties, these cells can potentially provide an unlimited tissue source for neural grafting in neurodegenerative disorders. However, the capability of neurons derived from these stem cells to project axons to distant targets following grafting, thereby enabling the restoration of damaged CNS circuitry, remains unknown. We hypothesize that grafted EGF‐responsive stem cells and their progeny are not competent to project axons into distant target sites unless exposed to specific neurotrophic factors. We compared neurite outgrowth between gestation day 14 primary mouse hippocampal cells and EGF‐generated secondary neurospheres of postnatal mouse hippocampal stem cells, following grafting onto the CA3 region of organotypic hippocampal slice cultures prepared from postnatal rats. Neurite outgrowth from grafted cells was visualized using immunohistochemical staining for the mouse specific antigen M6. Fetal hippocampal cells showed extensive and specific neurite outgrowth into many regions of the slice, including the CA1 region and distant subiculum, by 7 days after grafting. In contrast, neurite outgrowth from neurosphere cells was nonspecific and restricted to the immediate surrounding region after either 7 or even 15 days following grafting. Application of brain‐derived neurotrophic factor (BDNF) (5 ng in 0.5 μL) to slices on day 1 after grafting significantly enhanced neurite outgrowth from neurosphere cells, but overall neurite outgrowth from neurosphere cells remained decreased compared to that from fetal hippocampal cells. These results underscore that EGF‐responsive stem cell‐derived neurons possess limited intrinsic capability for long‐distance neurite outgrowth compared to fetal neurons. However, neurite outgrowth from EGF‐responsive stem cell–derived neurons can be enhanced by treating with specific neurotrophic factors such as BDNF. © 1999 John Wiley & Sons, Inc. J Neurobiol 38: 391–413, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号