首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Larocca  J. N.  Farooq  M.  Norton  W. T. 《Neurochemical research》1997,22(4):529-534
Tumor necrosis factor- induces oligodendrocytes apoptosis, and is known to stimulate the hydrolysis of sphingomyelin to form the lipid mediator, ceramide. These data encouraged us to determine whether ceramide itself is able to induce apoptosis in oligodendrocytes. For this purpose the cell-permeable ceramide analog, C2-ceramide was used. Treatment of bovine oligodendrocyte cell cultures with this compound induced cell death in a time- and concentration-dependent manner. The induction of cell death was specifically associated with the action of C2-ceramide and could not be elicited by dioctanoylglycerol (DC8) or phorbol 12-myristate 13-acetate (PMA). Treatment of the cultures with neutral sphingomyelinase, which increased the hydrolyses of endogenous sphingomyelin, resulted in oligodendrocyte death, whereas exposure of the cells to phospholipase C and A2 did not. C2-ceramide treatment caused DNA fragmentation. Morphologic analysis of the cells showed that C2-ceramide treatment resulted in a loss of their processes, reduction of cell volume, chromatin condensation, and formation of apoptotic bodies. These results indicate that ceramide can induce oligodendrocyte apoptosis, and suggest that sphingolipid metabolism plays a key role in the regulation of this process.  相似文献   

2.
A recent study revealed that ceramide acts as a second messenger in the sphingomyelin pathway and thus plays an important regulatory role in programmed cell death (apoptosis) to cell the lines induced by tumor-necrosis factor (TNF)- and interleukin (IL)-1, although its effect remains controversial regarding primary neuronal culture. We investigated the effect of a cell-permeable ceramide analog (C2-ceramide) on cultures of cerebellar granule cells, which is thought to have active sphingomyelin pathway during development. The presence of C2-ceramide decreased the number of cerebellar granule cells (CGCs) in a concentration-dependent manner when added at DIV 1 (1 day in vitro). The ED50 was 60 M. After DIV2, CGCs became less sensitive to C2-ceramide and the ED50 was 200 M at DIV 7. DNA staining with Hoechst 33258 showed the morphology of apoptotic nuclei in the degenerating neurons. Internucleosomal DNA degradation could also be observed by gel electrophoresis. Protein and RNA synthesis inhibitors prevented the death of neurons. C2-dihydroceramide, which lacks the 4–5 trans double bond and failed to induce neuronal death. These results thus demonstrated that C2-ceramide induces apoptosis to the CGCs at the early stage in vitro, however the CGCs were found to be less sensitive to C2-ceramide at the later stage in vitro.  相似文献   

3.
Whilst the role of ceramide, a second messenger of the sphingolipid family, in the initiation of receptor-mediated apoptosis is controversial, a growing body of evidence is emerging for a role of ceramide in the amplification of apoptosis via mitochondrial perturbations that culminate in the activation of execution caspases. Treatment of Jurkat T cells with the cell-permeable analog, C2-ceramide, resulted in the rapid onset of apoptosis as evidenced by Annexin V-FITC staining of externalised phosphatidylserine residues. Cells bearing this early apoptotic marker had a reduced mitochondrial transmembrane potential (m) that was preceded by the release of cytochrome c from mitochondria. Subsequent activation of caspase-3 provides the link between these ceramide-induced mitochondrial changes and execution caspases that ultimately result in the physical destruction of the cell. Collectively these results demonstrate that ceramide signalling results in caspase-mediated apoptosis via mitochondrial cytochrome c release and are further supportive of the role of ceramide in the amplification of apoptosis.  相似文献   

4.
Activation of protein kinase C (PKC) promotes the salvage pathway of ceramide formation, and acid sphingomyelinase has been implicated, in part, in providing substrate for this pathway (Zeidan, Y. H., and Hannun, Y. A. (2007) J. Biol. Chem. 282, 11549–11561). In the present study, we examined whether acid β-glucosidase 1 (GBA1), which hydrolyzes glucosylceramide to form lysosomal ceramide, was involved in PKC-regulated formation of ceramide from recycled sphingosine. Glucosylceramide levels declined after treatment of MCF-7 cells with a potent PKC activator, phorbol 12-myristate 13-acetate (PMA). Silencing GBA1 by small interfering RNAs significantly attenuated acid glucocerebrosidase activity and decreased PMA-induced formation of ceramide by 50%. Silencing GBA1 blocked PMA-induced degradation of glucosylceramide and generation of sphingosine, the source for ceramide biosynthesis. Reciprocally, forced expression of GBA1 increased ceramide levels. These observations indicate that GBA1 activation can generate the source (sphingosine) for PMA-induced formation of ceramide through the salvage pathway. Next, the role of PKCδ, a direct effector of PMA, in the formation of ceramide was determined. By attenuating expression of PKCδ, cells failed to trigger PMA-induced alterations in levels of ceramide, sphingomyelin, and glucosylceramide. Thus, PKCδ activation is suggested to stimulate the degradation of both sphingomyelin and glucosylceramide leading to the salvage pathway of ceramide formation. Collectively, GBA1 is identified as a novel source of regulated formation of ceramide, and PKCδ is an upstream regulator of this pathway.Sphingolipids are abundant components of cellular membranes, many of which are emerging as bioactive lipid mediators thought to play crucial roles in cellular responses (1, 2). Ceramide, a central sphingolipid, serves as the main precursor for various sphingolipids, including glycosphingolipids, gangliosides, and sphingomyelin. Regulation of formation of ceramide has been demonstrated through the action of three major pathways: the de novo pathway (3, 4), the sphingomyelinase pathway (5), and the salvage pathway (68). The latter plays an important role in constitutive sphingolipid turnover by salvaging long-chain sphingoid bases (sphingosine and dihydrosphingosine) that serve as sphingolipid backbones for ceramide and dihydroceramide as well as all complex sphingolipids (Fig. 1A).Open in a separate windowFIGURE 1.The scheme of the sphingosine salvage pathway of ceramide formation and inhibition of PMA induction of ceramide by fumonisin B1. A, the scheme of the sphingosine salvage pathway of ceramide formation. B, previously published data as to effects of fumonisin B1 on ceramide mass profiles (23) are re-plotted as a PMA induction of ceramide. In brief, MCF-7 cells were pretreated with or without 100 μm fumonisin B1 for 2 h followed by treatment with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Results are expressed as sum of increased mass of ceramide species. Dotted or open columns represents C16-ceramide or sum of other ceramide species (C14-ceramide, C18-ceramide, C18:1-ceramide, C20-ceramide, C24-ceramide, and C24:1-ceramide), respectively. The data represent mean ± S.E. of three to five values.Metabolically, ceramide is also formed from degradation of glycosphingolipids (Fig. 1A) usually in acidic compartments, the lysosomes and/or late endosomes (9). The stepwise hydrolysis of complex glycosphingolipids eventually results in the formation of glucosylceramide, which in turn is converted to ceramide by the action of acid β-glucosidase 1 (GBA1)2 (9, 10). Severe defects in GBA1 activity cause Gaucher disease, which is associated with aberrant accumulation of the lipid substrates (1014). On the other hand, sphingomyelin is cleaved by acid sphingomyelinase to also form ceramide (15, 16). Either process results in the generation of lysosomal ceramide that can then be deacylated by acid ceramidase (17), releasing sphingosine that may escape the lysosome (18). The released sphingosine may become a substrate for either sphingosine kinases or ceramide synthases, forming sphingosine 1-phosphate or ceramide, respectively (3, 1921).In a related line of investigation, our studies (20, 22, 23) have begun to implicate protein kinase Cs (PKC) as upstream regulators of the sphingoid base salvage pathway resulting in ceramide synthesis. Activation of PKCs by the phorbol ester (PMA) was shown to stimulate the salvage pathway resulting in increases in ceramide. All the induced ceramide was inhibited by pretreatment with a ceramide synthase inhibitor, fumonisin B1, but not by myriocin, thus negating acute activation of the de novo pathway and establishing a role for ceramide synthesis (20, 23). Moreover, labeling studies also implicated the salvage pathway because PMA induced turnover of steady state-labeled sphingolipids but did not affect de novo labeled ceramide in pulse-chase experiments.Moreover, PKCδ, among PKC isoforms, was identified as an upstream molecule for the activation of acid sphingomyelinase in the salvage pathway (22). Interestingly, the PKCδ isoform induced the phosphorylation of acid sphingomyelinase at serine 508, leading to its activation and consequent formation of ceramide. The activation of acid sphingomyelinase appeared to contribute to ∼50% of the salvage pathway-induced increase in ceramide (28) (also, see Fig. 4C). This raised the possibility that distinct routes of ceramide metabolism may account for the remainder of ceramide generation. In this study, we investigated glucocerebrosidase GBA1 as a candidate for one of the other routes accounting for PKC-regulated salvage pathway of ceramide formation.Open in a separate windowFIGURE 4.Effects of knockdown of lysosomal enzymes on the generation of ceramide after PMA treatment. A, MCF-7 cells were transfected with 5 nm siRNAs of each of four individual sequences (SCR, GBA1-a, GBA1-b, and GBA1-c) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of the C16-ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to nine values. B, MCF-7 cells were transfected with 5 nm siRNAs of SCR or GBA1-a (GBA1) for 48 h and then stimulated with 100 nm PMA for 1 h. Lipids were extracted, and then the levels of individual ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. The data represent mean ± S.E. of three to five values. C14-Cer, C14-ceramide; C16-Cer, C16-ceramide; C18-Cer; C18-ceramide; C18:1-Cer, C18:1-ceramide; C20-Cer, C20-ceramide; C20-Cer, C24-ceramide; C24:1-Cer, C24:1-ceramide. C, MCF-7 cells were transfected with 5 nm siRNAs of SCR, acid sphingomyelinase (ASM), or GBA1-a (GBA1) for 48 h following stimulation with (PMA) or without (Control) 100 nm PMA for 1 h. Lipids were extracted, and then the levels of ceramide species were determined by high-performance liquid chromatography-tandem mass spectrometry. Levels of C16-ceramide are shown. The data represent mean ± S.E. of four to five values. Significant changes from SCR-transfected cells treated with PMA are shown in A–C (*, p < 0.02; **, p < 0.05; ***, p < 0.01).  相似文献   

5.
Decraene C  Brugg B  Ruberg M  Eveno E  Matingou C  Tahi F  Mariani J  Auffray C  Pietu G 《Genome biology》2002,3(8):research0042.1-research004222

Background

Ceramide is important in many cell responses, such as proliferation, differentiation, growth arrest and apoptosis. Elevated ceramide levels have been shown to induce apoptosis in primary neuronal cultures and neuronally differentiated PC 12 cells.

Results

To investigate gene expression during ceramide-dependent apoptosis, we carried out a global study of gene expression in neuronally differentiated PC 12 cells treated with C2-ceramide using an array of 9,120 cDNA clones. Although the criteria adopted for differential hybridization were stringent, modulation of expression of 239 genes was identified during the effector phase of C2-ceramide-induced cell death. We have made an attempt at classifying these genes on the basis of their putative functions, first with respect to known effects of ceramide or ceramide-mediated transduction systems, and then with respect to regulation of cell growth and apoptosis.

Conclusions

Our cell-culture model has enabled us to establish a profile of gene expression during the effector phase of ceramide-mediated cell death. Of the 239 genes that met the criteria for differential hybridization, 10 correspond to genes previously involved in C2-ceramide or TNF-α signaling pathways and 20 in neuronal disorders, oncogenesis or more broadly in the regulation of proliferation. The remaining 209 genes, with or without known functions, constitute a pool of genes potentially implicated in the regulation of neuronal cell death.  相似文献   

6.
A major target of cadmium (Cd2+) toxicity is the kidney proximal tubule (PT) cell. Cd2+-induced apoptosis of PT cells is mediated by sequential activation of calpains at 3–6 h and caspases-9 and -3 after 24-h exposure. Calpains also partly contribute to caspase activation, which emphasizes the importance of calpains for PT apoptosis by Cd2+. Upstream processes underlying Cd2+-induced calpain activation remain unclear. We describe for the first time that 10–50 µM Cd2+ causes a significant increase in ceramide formation by 22% (3 h) and 72% (24 h), as measured by diacylglycerol kinase assay. Inhibition of ceramide synthase with fumonisin B1 (3 µM) prevents ceramide formation at 3 h and abolishes calpain activation at 6 h, which is associated with significant attenuation of apoptosis at 3–6 h with Hoechst 33342 nuclear staining and/or 3(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) death assays. This indicates that Cd2+ enhances de novo ceramide synthesis and that calpains are a downstream target of ceramides in apoptosis execution. Moreover, addition of C6-ceramide to PT cells increases cytosolic Ca2+ and activates calpains. Apoptosis mediated by C6-ceramide at 24 h is significantly reduced by caspase-3 inhibition, which supports cross talk between calpain- and caspase-dependent apoptotic pathways. We conclude that Cd2+-induced apoptosis of PT cells entails endogenous ceramide elevation and subsequent Ca2+-dependent calpain activation, which propagates kidney damage by Cd2+. nephrotoxicity; cell signaling; cell biology and structure  相似文献   

7.
In Alzheimer’s disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1–40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.  相似文献   

8.
Apoptosis and necrosis are distinct forms of cell death that occur in response to various agents. We studied the action of N-Acetyl-D-sphingosine (C2-ceramide) or N-hexanoyl-D-sphyngosine (C6-ceramide) in human hepatoma HepG2 cell line. The cells were treated in vitro for 1–24 h. Cell toxicity was evaluated by MTT assay. DNA content was estimated by gel electrophoresis and flow cytometry. Measurement of mitochondrial respiration, analysis of cytochrome c release and caspase-3 activation were assessed in order to determine if either of these events in the induction of apoptosis and/or necrosis was predominant. We have demonstrated that C2 and C6-ceramide were cytotoxic in a time and dose-dependent manner. After 24 h of treatment with 100 M of C2 and C6 the morphology (May-Giemsa staining) of treated cells displayed an apoptotic phenotype in C6-treated cells, confirmed by a high (sub-G1 peak > 20%) proportion by flow cytometry while a necrotic morphology was observed after C2-ceramide treatment, confirmed by DNA smearing in DNA electrophoresis. After C6-ceramide incubation, the respiratory chain was functional only slightly inhibited (20%), there was production of ATP, cytochrome c release without ROS production, activation of caspase-3 and induction of apoptosis. On the contrary, C2-ceramide inhibit the respiratory chain more intensely (80%) increased significantly ROS production, which resulted in an arrest of ATP production, no cytochrome c release and absence of caspase-3 activation. Finally after complete exhaustion of intracellular ATP, mitochondrial explosion induce necrotic cell death. In conclusion, evidence suggest that mitochondrial respiratory chain function is essential for controlling the decision of the cell to enter a apoptotic or necrosis process.  相似文献   

9.
The sphingomyelin derivative ceramide is a signaling molecule implicated in numerous physiological events. Recently published reports indicate that ceramide levels are elevated in insulin-responsive tissues of diabetic animals and that agents which trigger ceramide production inhibit insulin signaling. In the present series of studies, the short-chain ceramide analog C2-ceramide inhibited insulin-stimulated glucose transport by ~50% in 3T3-L1 adipocytes, with similar reductions in hormone-stimulated translocation of the insulin-responsive glucose transporter (GLUT4) and insulin-responsive aminopeptidase. C2-ceramide also inhibited phosphorylation and activation of Akt, a molecule proposed to mediate multiple insulin-stimulated metabolic events. C2-ceramide, at concentrations which antagonized activation of both glucose uptake and Akt, had no effect on the tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) or the amounts of p85 protein and phosphatidylinositol kinase activity that immunoprecipitated with anti-IRS-1 or antiphosphotyrosine antibodies. Moreover, C2-ceramide also inhibited stimulation of Akt by platelet-derived growth factor, an event that is IRS-1 independent. C2-ceramide did not inhibit insulin-stimulated phosphorylation of mitogen-activated protein kinase or pp70 S6-kinase, and it actually stimulated phosphorylation of the latter in the absence of insulin. Various pharmacological agents, including the immunosuppressant rapamycin, the protein synthesis inhibitor cycloheximide, and several protein kinase C inhibitors, were without effect on ceramide’s inhibition of Akt. These studies demonstrate ceramide’s capacity to inhibit activation of Akt and imply that this is a mechanism of antagonism of insulin-dependent physiological events, such as the peripheral activation of glucose transport and the suppression of apoptosis.  相似文献   

10.
The anticancer effects of ceramide have been reported in many types of cancers but less in lung cancer. In this study, we used C2-ceramide to further investigate its possible anticancer effects and mechanisms on non-small cell lung cancer (NSCLC) H1299 cells. The result of cell proliferation in terms of trypan blue assay showed high dose of C2-ceramide inhibited cell survival after 24 h treatment. The flow cytometry-based assays indicated the effect of apoptosis, chromatin condensation, and G1 arrest in terms of Annexin V/propidium iodide (PI), DAPI, and PI stainings, respectively. Moreover, the decreased protein level of p-Akt, p-NFκB, survivin and cyclin A2 were detected by Western blot assay. Taken together, these results indicated the antiproliferative effect of C2-ceramide is majorly responsible for cell apoptosis in lung cancer H1299 cells.  相似文献   

11.
Mitochondria mediate both cell survival and death. The intrinsic apoptotic pathway is initiated by the permeabilization of the mitochondrial outer membrane to pro-apoptotic inter-membrane space (IMS) proteins. Many pathways cause the egress of IMS proteins. Of particular interest is the ability of ceramide to self-assemble into dynamic water-filled channels. The formation of ceramide channels is regulated extensively by Bcl-2 family proteins and dihydroceramide. Here, we show that the chain length of biologically active ceramides serves as an important regulatory factor. Ceramides are synthesized by a family of six mammalian ceramide synthases (CerS) each of which produces a subset of ceramides that differ in their fatty acyl chain length. Various ceramides permeabilize mitochondria differentially. Interestingly, the presence of very long chain ceramides reduces the potency of C16-mediated mitochondrial permeabilization indicating that the intercalation of the lipids in the dynamic channel has a destabilizing effect, reminiscent of dihydroceramide inhibition of ceramide channel formation (Stiban et al., 2006). Moreover, mitochondria isolated from cells overexpressing the ceramide synthase responsible for the production of C16-ceramide (CerS5) are permeabilized faster upon the exogenous addition of C16-ceramide whereas they are resistant to permeabilization with added C24-ceramide. On the other hand mitochondria isolated from CerS2-overexpressing cells show the opposite pattern, indicating that the product of CerS2 inhibits C16-channel formation ex vivo and vice versa. This interplay between different ceramide metabolic enzymes and their products adds a new dimension to the complexity of mitochondrial-mediated apoptosis, and emphasizes its role as a key regulatory step that commits cells to life or death.  相似文献   

12.
Amyloid peptides interfere with survival of pancreatic beta-cells. In some cells apoptosis is paralleled by ceramide-dependent alterations of ion channel activity. The purpose of the present study was to elucidate the dependence of amyloid peptides Aß1-42 and islet amyloid polypeptide (IAPP)-induced cell death on ceramide formation and ion channel activity in murine pancreatic islet cells. As disclosed by TUNEL (terminal dUTP nick-end labelling) and cleaved caspase 3 staining, apoptotic cell death was induced by Aß1-42, IAPP and exogenously added C2-ceramide in islet cells from wild type mice. In islet cells from acid sphingomyelinase-deficient mice (ASMKO) Aß1-42 and IAPP but not exogenously added N-acetyl-d-sphingosine (C2-ceramide, 20 μM) failed to stimulate apoptosis. Immunofluorescent staining revealed a stimulatory effect of Aß1-42 on ceramide formation. According to patch clamp experiments, administration of Aß1-42 and IAPP significantly decreased outwardly rectifying whole cell currents in wild type but not in ASMKO islet cells. C2-ceramide but not inactive di-ceramide (20 μM) mimicked the inhibitory effect on Kv channel current. In conclusion, amyloid peptides induce apoptosis of pancreatic islet cells at least in part through activation of acid sphingomyelinase resulting in production of ceramide and subsequent inhibition of ion channel activity.  相似文献   

13.
Compelling evidence indicates that activation of the JNK/SAPK signaling pathway is obligatory for apoptosis induction by multiple cell stresses that activate the sphingomyelin cycle. Moreover, ectopic expression of bcl-2 can impair apoptosis signaling by most of the cell stresses that activate the ceramide/JNK pathway. Here we show that enforced expression of bcl-2 protects prostate carcinoma cells against the induction of apoptosis by exogenous C2-ceramide. Moreover, enforced bcl-2 expression blocked the capacity of C2-ceramide to activate JNK1, indicating bcl-2 functions at the level of JNK1 or upstream of JNK1 in the ceramide/JNK pathway. The contribution of bcl-2 to the regulation of the arachidonate pathway for prostate carcinoma cell survival was also investigated using highly selective inhibitors of arachidonate metabolism. Our results indicate bcl-2 can protect cells against diminished availability of arachidonic acid, 12-HETE, and 15-HETE. Finally, arachidonic acid substantially suppresses the induction of apoptosis by C2-ceramide, providing evidence for the opposing influences of these lipid signaling pathways in the mediation of prostate carcinoma cell survival. These results provide evidence for opposing influences of the ceramide and arachidonate signaling pathways in the mediation of cell death and cell survival, respectively, in prostate carcinoma cells and suggest a dual role for bcl-2 in this context.  相似文献   

14.
Ceramide lipids have emerged as important intracellular signalling molecules that mediate diverse cellular effects, of which programmed cell death, or apoptosis, has attracted significant interest. Although the exact mechanism(s) by which ceramides trigger apoptosis is not fully understood, there is considerable evidence that they are key mediators of this response. Exogenously applied, cell-permeable ceramides have been shown to induce apoptosis when incubated with cells in culture. We examined here the cytotoxicity of ceramides with varying acyl chain lengths in order to determine whether acyl chain length affects pro-apoptotic activity within the concentration range of 0-100 μM. We found that for C6-, C8-, C10-, C14- and C16-ceramide, the chain length was inversely proportional to cytotoxic activity, with C6-ceramide being most active (IC50 values in the 3-14 μM range) and C16-ceramide being least active (IC50 values in excess of 100 μM) in the MDA435/LCC6 human breast cancer and J774 mouse macrophage cell lines investigated. Using these two ceramide forms we were able to correlate the observed cytotoxicity with cellular uptake, and we observed that a lack of intracellular delivery may be responsible for the weak activity of C16-ceramide. We therefore investigated the possibility of incorporating ceramide lipids into liposome bilayers to enhance this delivery. We demonstrate that stable, ceramide-containing liposomes can be formulated, and that they are cytotoxic when taken up by cells in vitro. These results provide an increased understanding of the differences in cytotoxic activity of exogenous short- and long-chain ceramide lipids, and their incorporation into biologically active liposomal formulations opens new avenues for apoptosis induction.  相似文献   

15.
Ceramide serves as a second messenger produced from sphingomyelin by the activation of sphingomyelinase (SMase). Here, we suggest that neutral SMase 2 (nSMase2) may regulate dopamine (DA) uptake. nSMase2 siRNA-transfected PC12 cells showed lower levels of nSMase activity and ceramide than scramble siRNA-transfected and control cells. Interestingly, transfection of nSMase2 siRNA or pretreatment with the nSMase2-specific inhibitor GW4869 resulted in decreased DA uptake. Reciprocally, exposure of PC12 cells to cell-permeable C6-ceramide induced a concentration-dependent increase in DA uptake. Removal of extracellular calcium by EGTA increased DA uptake in scramble-transfected and control cells, but not in nSMase2 siRNA-transfected or GW4869-pretreated cells. Moreover, siRNA-transfected cells showed higher levels of intracellular calcium than scramble cells, while C6-ceramide treatment resulted in decreased intracellular calcium compared to vehicle treatment alone. Taken together, these data suggest that nSMase2 may increase DA uptake through inducing ceramide production and thereby decreasing intracellular calcium levels.  相似文献   

16.
The effects of a series of ceramide analogs with acyl chain lengths of 2, 6, 8 and 16 on the structure of dipalmitoylphosphatidylcholine (DPPC) bilayers and cobra venom phospholipase A2 (PL-A2) activity were studied using 2H-NMR and specific enzymatic assays. C2-ceramide did not induce a significant effect on the structure of DPPC bilayers and did not alter PL-A2 activity. C6- and C8-ceramides increased the ordering of the DPPC acyl chains, correlating with the inhibition of PL-A2 activity which was probably due to the increased lateral surface pressure. The long-chain C16-ceramide induced lateral phase separation of the bilayers into gel and liquid crystalline domains and activated PL-A2, as does natural ceramide (Huang et al. 1996). Taken together, the results strongly suggest a correlation between membrane defects induced by ceramide analogs and their effects on phospholipase A2 activity. Furthermore, the effects of short-chain ceramides on PL-A2 are different from those of natural ceramide, indicating that the cell-permeable short-chain ceramide analogs, widely used to study the sphingomyelin-dependent cellular signal transduction pathway, may not completely mimic the natural product. Received: 8 July 1997 / Accepted: 19 January 1998  相似文献   

17.
The tumour suppressor gene p53 and the intracellular signalling molecule ceramide have both been shown to play crucial roles in the induction of apoptosis by ionising radiation. In this study we examined whether p53 and ceramide are involved in independent signal pathways, inducing different types of apoptosis. TK6 (p53wt/wt) and WTK1 (p53mut/mut) lymphoblastoid cells were treated with ionising radiation or N-acetyl-d-sphingosine (C2-ceramide). Flow cytometry and fluorescence microscopy studies were performed to characterise the time kinetics and morphological features of induced apoptosis. Ceramide- and radiation-induced apoptotic cells display characteristic differences in morphology and DNA staining and ceramide-induced apoptosis is expressed much faster than radiation-induced apoptosis. Radiation-induced apoptosis is p53-dependent and ceramide-induced apoptosis is p53-independent. The p53 pathway and the ceramide pathway are two independent signal pathways leading to distinct types of apoptosis. Since p53 is very often dysfunctional in tumour cells, modifying the ceramide pathway is a promising strategy to increase tumour sensitivity to radiation and other anticancer agents. Received: 19 April 2001 / Accepted: 15 October 2001  相似文献   

18.
Heat shock induces various cellular responses including inhibition of protein synthesis, production of heat shock proteins (HSPs) and induction of thermotolerance. The molecular mechanisms of the processes have not been well understood. It has been proposed that ceramide formation during heat shock mediates heat shock induced apoptosis. We examined whether C2-ceramide mimicked the cellular response to heat shock in RIF-1 cells and their thermotolerant derivative TR-RIF-1 cells. Discernible effects between heat shock and C2-ceramide treatments were observed in cellular changes such as total protein synthesis, HSP synthesis, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) activity and PARP cleavage. Heat shock immediately inhibited cellular protein synthesis, which was recovered by synthesizing HSPs first and then whole proteins later. Heat shock also activated SAPK/JNK and increased PARP cleavage in dose-dependent manner. Thermotolerant TR-RIF-1 cells responded to heat shock more insensitively than RIF-1 cells. On the other hand, C2-ceramide treatment did not accompany any changes induced by heat shock. No discernible differences between RIF-1 and TR-RIF-1 cells were observed by C2-ceramide treatment. We tried to figure out how C2-ceramide interacts with cellular membrane and found that exogenous C2-ceramide was incorporated into the outer monolayer and flipped into the inner monolayer of human erythrocytes in ATP-dependent manner. However, the rate of C2-ceramide incorporation was similar in control and thermotolerant cells. In summary, thermotolerant cells are resistant to heat shock induced apoptotic signaling but not resistant, rather sensitive to membrane disturbing C2-ceramide mediated apoptosis. These results suggest that heat shock and ceramide have different signal transduction pathways.  相似文献   

19.
20.
Two immortalized cell lines, sup (+)and sup (), derived from mutagenized Syrian hamster embryo cells,were used to study the relationship and temporal order between calciumand ceramide signals during apoptosis. The early preneoplastic cells,termed sup (+), suppress tumorigenicity when hybridized with tumorcells, whereas later-stage sup () cells do not. In reduced serumconditions, sup (+) cells cease proliferating and undergo apoptosis; incontrast, sup () cells continue slow growth and undergo necrosis. Insup (+) cells, decreased endoplasmic reticulum (ER) calcium occurs 4 h after low serum treatment and precedes apoptosis. Significant elevations in ceramide are observed 16 h after reduced serumtreatment of sup (+) cells but are not found in sup () cells.Inhibiting ER calcium depletion in low serum-treated sup (+) cells bytreating with high levels of calcium prevents both ceramide generation and apoptosis. Conversely, inducing ER calcium depletion in sup ()cells by treating with low serum plus thapsigargin results in elevatedceramide levels and apoptosis. Furthermore, C6-ceramide treatment induced apoptosis of sup () cells in low serum, a condition that does not normally cause apoptosis. C6-ceramidetreatment did not induce apoptosis in either sup (+) or sup () cellsin 10% serum but did cause G2/M arrest. These studies showthat ceramide production is downstream of ER calcium release.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号