首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

2.
To investigate whether CD4+ T cells are predetermined to produce a given pattern of lymphokines, we have used a culture system that allows the controlled induction of either IL-2- or IL-4-producing CD4+ T cells. Single, freshly isolated murine CD4+ T cells were activated with Con A, rIL-2, and APC; the developing clones were split and then cultured for an additional 14 days with either rIL-2 alone or with rIL-2 and anti-CD3 stimulation. Subclones expanded in the presence of rIL-2 alone produced predominantly IL-2, although subclones derived from the same precursor and expanded in the presence of rIL-2 and a mitogenic antibody to CD3 released predominantly IL-4. Subclones expanded for 2 wk in the presence of rIL-2 plus a mitogenic mAb to CD3 released up to 60 times more IL-4 but only 1/90 the amount of IL-2 released by subclones derived from the same precursor cell and expanded with rIL-2. Both phenotypes can be derived from IL-2-producing precursor cells. These results demonstrate that IL-2-producing clones can be derived from the same cells as IL-4-producing clones and are most consistent with the view that the IL-2-producing Th1 or the IL-4-producing Th2 phenotype of a T cell clone is acquired during T cell differentiation and is not secondary to the expansion of distinct subpopulations that are predetermined to produce a specific cytokine pattern.  相似文献   

3.
Rested murine CD4+ Th1 clones do not produce IL-4, but have previously been shown to be capable of responding to IL-4 if they are first activated with Ag and APC. In this study, we have examined the activation requirements for induction of competence to respond to IL-4 in these clones. TCR occupancy alone (given either as chemically fixed APC and Ag, anti-CD3, Con A, or ionomycin and PMA) was inadequate, but the addition of a source of costimulation to any of these stimuli resulted in complete induction of competence to respond to IL-4. Pretreatment of the Th1 clones with TCR occupancy alone induced an anergic state from which subsequent full stimulation with Ag and APC failed to give IL-4 responsiveness. Pretreatment of the cells with IL-2 alone was an inadequate signal to induce IL-4 responsiveness and only a partial response was obtained when TCR occupancy was combined with IL-2. Addition of anti-IL-2 and anti-IL-2R antibodies during full activation with APC and Ag gave a 50% inhibition of competence induction. These results demonstrate that costimulation, in addition to its role in IL-2 production, is an important second signal for inducing T cells to become competent to respond to IL-4.  相似文献   

4.
Culture of murine T cells with immobilized (platebound) anti-CD3 antibody results in autocrine growth factor secretion in both Th1 (IL-2 producing) and Th2 (IL-4 producing) cells. Using a panel of murine T cell clones, we demonstrate that the IL-2-induced proliferation of Th1 clones is dramatically inhibited by immobilized anti-CD3 antibody, whereas that of Th2 clones is not. This unresponsiveness of Th1 clones to IL-2 is not due to decreases in IL-2R expression. Supernatants from Th1 or Th2 cell cultures fail to alter the effects of anti-CD3 on the two types of clones, suggesting that unresponsiveness induced in Th1 clones or the lack thereof in Th2 clones is not mediated by a stable cytokine(s). Accessory cells enhance the proliferation of Th1 cells exposed to low concentrations of anti-CD3, but the unresponsiveness induced by high concentrations of anti-CD3 is not prevented by accessory cells. Finally, soluble anti-CD4 antibody prevents the induction of the unresponsive state even at high concentrations of anti-CD3. These experiments demonstrate that two subsets of cloned CD4+ T cells differ in their responses to anti-CD3, and that CD4 molecules may play a critical role in regulating the outcome of receptor-mediated stimulation.  相似文献   

5.
6.
To explore the relationship between CD4 and CD3/Ti on the T cell surface, we have studied a panel of Ag-specific Th cell lines and clones, as well as resting and mitogen-activated CD4+ cells. Our results show that exposure of Th cells to their specific antigenic stimuli, but not to irrelevant stimuli, induced the rapid disappearance of approximately 20 to 35% of CD3 and CD4 molecules. The modulation of these molecules was detected in less than 1 h, became maximal at 12 h, and recovered thereafter in parallel. Treatment of Th cells with anti-CD4 antibody prevented Ag-induced modulation of CD3, and treatment with anti-CD3 blocked modulation of CD4. In the absence of Ag, treatment of these cells with an antibody (WT-31) directed at a conformational determinant within CD3/Ti or with the combination of anti-CD3 antibody and goat anti-mouse Ig, also resulted in significant modulation of CD4. Similar treatment of PHA-activated CD4+ T cells with anti-CD3/Ti antibodies also induced CD4 modulation; however, the same antibodies failed to affect CD4 expression on fresh resting T cells. These results indicate that on activated, but not resting T cells, CD4 molecules can be physically associated with CD3/Ti. We postulate that this association is essential for efficient Th cell activation, and further that the ability of anti-CD4 antibodies to inhibit helper functions is due to their prevention of CD4-CD3/Ti interaction on the T cell surface.  相似文献   

7.
Despite high viral loads, T cells from sooty mangabey (SM) monkeys that are naturally infected with SIV but remain clinically asymptomatic, proliferate and demonstrate normal Ag-specific memory recall CD4(+) T cell responses. In contrast, CD4(+) T cells from rhesus macaques (RM) experimentally infected with SIV lose Ag-specific memory recall responses and develop immunological anergy. To elucidate the mechanisms for these distinct outcomes of lentiviral infection, highly enriched alloreactive CD4(+) T cells from humans, RM, and SM were anergized by TCR-only stimulation (signal 1 alone) and subsequently challenged with anti-CD3/anti-CD28 Abs (signals 1 + 2). Whereas alloreactive CD4(+)T cells from humans and RM became anergized, surprisingly, CD4(+) T cells from SM showed marked proliferation and IL-2 synthesis after restimulation. This resistance to undergo anergy was not secondary to a global deficiency in anergy induction of CD4(+) T cells from SM since incubation of CD4(+) T cells with anti-CD3 alone in the presence of rapamycin readily induced anergy in these cells. The resistance to undergo anergy was reasoned to be due to the ability of CD4(+) T cells from SM to synthesize IL-2 when incubated with anti-CD3 alone. Analysis of phosphorylated kinases involved in T cell activation showed that the activation of CD4(+) T cells by signal 1 in SM elicited a pattern of response that required both signals 1 + 2 in humans and RM. This function of CD4(+) T cells from SM may contribute to the resistance of this species to SIV-induced disease.  相似文献   

8.
Human atopen-specific types 1 and 2 T helper cell clones.   总被引:11,自引:0,他引:11  
Eight representative T lymphocyte clones (TLC) randomly selected from previously described panels of CD4+ housedust mite Dermatophagoides pteronyssinus (Dp)-specific TLC from atopic and nonatopic donors were studied in more detail in a comparative investigation. The TLC from the atopic donors closely resembled murine type 2 Th (Th2) cells by secreting substantial IL-4, IL-5, IL-6, TNF-alpha, and granulocyte-macrophage (GM)-CSF, minimal IFN-gamma, and relatively little IL-2. In contrast, the nonatopic's TLC resembled murine type 1 Th (TH1) cells by secreting substantial IFN-gamma, IL-2, TNF-alpha, and GM-CSF, no IL-4, and little IL-5. A difference with murine Th1 cells was their additional secretion of IL-6. These cytokine profiles were consistent upon stimulation via different activation pathways including stimulation with specific Dp Ag, mitogenic lectins, and antibodies to CD2, CD3, or CD28. The observed differences in IL-2 secretion, however, were most evident upon stimulation with anti-CD28. If TLC cells were cultured with highly purified B cells and stimulated with anti-CD3 in the absence of exogenous IL-4, IgE synthesis was induced only in cultures with the atopics' Th2 clones, which could be completely abrogated by anti-IL-4. The mere presence of exogenous rIL-4, however, did not result in IgE synthesis, nor did unstimulated TLC cells alone. But if unstimulated TLC cells (that proved not to secrete detectable amounts of cytokines) were added together with rIL-4, again IgE synthesis was induced only in cultures with the atopics' Th2 clones, suggesting the involvement of an additional, as yet unidentified accessory helper function of the atopics' Th2 clones for IgE induction. Unstimulated Th2 clones showed a significantly higher expression of CD28 than the Th1 clones, but three days after stimulation, CD28 expression was elevated to comparable levels on both subsets. When added to B cells at this time point, together with rIL-4 and anti-IFN-gamma, still only the atopics' Th2 clones supported IgE synthesis, arguing against a role for CD28 in this accessory helper function. Whereas the atopics' Th2 clones were excellent helper cells for IgE induction, a unique property of the nonatopic's Th1 clones was their cytolytic activity toward autologous APC which could be induced by specific Dp Ag and by anti-CD3. The present data provide clear evidence for the existence of Th1 and Th2 cells in man.  相似文献   

9.
Murine IL-10 has been reported originally to be produced by the Th2 subset of CD4+ T cell clones. In this study, we demonstrate that human IL-10 is produced by Th0, Th1-, and Th2-like CD4+ T cell clones after both Ag-specific and polyclonal activation. In purified peripheral blood T cells, low, but significant, levels of IL-10 were found to be produced by the CD4+CD45RA+ population, whereas CD4+CD45RA- "memory" cells secreted 5- to 20-fold higher levels of IL-10. In addition, IL-10 was produced by activated CD8+ peripheral blood T cells. Optimal induction of IL-10 was observed after activation by specific Ag and by the combination of anti-CD3 mAb and the phorbol ester tetradecanoyl phorbol acetate, whereas the combination of calcium ionophore A23187 and 12-O-tetradecanoylphorbol-13-acetate acetate was a poor inducer of IL-10 production. Kinetic studies indicated that IL-10 was produced relatively late as compared with other cytokines. Maximal IL-10 mRNA expression in CD4+ T cell clones and purified peripheral blood T cells was obtained after 24 h, whereas maximal IL-10 protein synthesis occurred between 24 h and 48 h after activation. No differences were observed in the kinetics of IL-10 production among Th0, Th1-, and Th2-like subsets of CD4+ T cell clones. The results indicate a regulatory role for IL-10 in later phases of the immune response.  相似文献   

10.
Activation of alloreactive T cells by APCs such as dendritic cells (DC) has been implicated as crucial step in transplant rejection. In contrast, it has been proposed that macrophages (Mphi) maintain tolerance toward alloantigens. It was therefore the aim of this study to further analyze the T cell-stimulatory capacity of mature DC and Mphi in vitro using the model of allogeneic MLR. There was a strong proliferative response in T cells cocultured with DC, which was further increased upon restimulation in a secondary MLR. In contrast, T cells did not proliferate in cocultures with Mphi despite costimulation with anti-CD28 and IL-2. Cytokine analysis revealed considerable levels of IL-10 in cocultures of T cells with Mphi, whereas high amounts of IL-2 and IFN-gamma were present in cocultures with DC. There was only minimal T cell proliferation in a secondary MLR when T cells were rescued from primary MLR with Mphi and restimulated with DC of the same donor, or DC of an unrelated donor (third party), whereas a strong primary proliferative response was observed in resting T cells, demonstrating induction of T cell anergy by Mphi. Functional analysis of T cells rescued from cocultures with Mphi demonstrated that anergy was at least partly mediated by IL-10-producing regulatory T cells induced by Mphi. These results demonstrate that Mphi drive the differentiation of regulatory T cells and mediate anergy in allogeneic T cells, supporting the concept that Mphi maintain peripheral tolerance in vivo.  相似文献   

11.
To test the hypothesis that resting and previously activated B lymphocytes differ in their proliferative and differentiative responses to various Th cell-derived stimuli, we have examined the interactions of purified small (resting) and large (activated) murine B cells with rabbit Ig-specific Th1 and Th2 clones in the presence of the Ag analogue, rabbit anti-mouse Ig antibody. Small numbers of Th2 cells induce strong Ag-dependent proliferation of and Ig secretion by both resting and activated B lymphocytes. In contrast, Th1 clones stimulate lower responses of activated B cells and fail to stimulate small resting B cells. An interaction with Th1 clones does make small B cells responsive to the Th2-derived cytokine, IL-4, indicating that Th1 clones are capable of delivering some but not all the stimuli necessary for the induction of humoral immunity. Finally, in order to compare the responses of small and large B cells to cognate interactions and secreted cytokines, we used an autoreactive I-Ak-specific Th2 line. This line induces proliferation of and Ig secretion by I-Ak expressing but not H-2d resting and activated B cells as a result of cognate interactions. However, when the H-2d B cells are bystanders in the presence of cytokine secretion by this Th2 line, or are directly exposed to Th2-derived cytokines, both small and large B cells are induced to proliferate but only the large B cells secrete antibody. These results indicate that the magnitude and nature of antibody responses depend on three principal factors: the cytokines produced by Th cells, the state of activation of the responding B lymphocytes, and whether the B cells are recipients of cognate help or are bystanders at the site of T cell stimulation. Our findings also confirm the view that cognate T-B interactions are most efficient for initiating B cell responses and may allow B cells to subsequently respond to a variety of T cell-derived cytokines.  相似文献   

12.
Most macrophages in the peripheral tissues present Ag optimally to a variety of functionally distinct Th cells. Although thymic macrophages have been implicated in deleting autoreactive thymocytes, their role in influencing the functional capacities of mature T cells is not clear. We have established a normal untransformed macrophage cell line, named TMC, from the mouse thymus. The TMC line presents protein Ag to an IL-4-producing Th2 type Th clone after IFN-gamma treatment as evidence by T cell proliferation and the release of IL-3 and IL-4. However, these thymic macrophages are inefficient at stimulating a well characterized cytochrome C-specific IL-2-producing Th1 clone, A.E7. Ag presentation by TMC results in the production of IL-3 but not IL-2 production or proliferation of A.E7 cells. This selective Ag presentation defect to Th1 cells is corrected by the addition of live but not fixed allogeneic irradiated spleen cells, suggesting that the thymic macrophages lack the expression of costimulatory activity required for Th1 activation. This is further demonstrated by the failure of live thymic macrophages to provide costimulatory activity to A.E7 cells stimulated with fixed spleen cells plus the antigenic peptide 81-104. Exposure of A.E7 cells to paraformaldehyde-treated TMC in the presence of 81-104 peptide induces specific hyporesponsiveness, anergy. These data demonstrate that thymic macrophages can have a profound influence on the response of selected T cells to Ag. Furthermore, the nature of the T cell stimulus is also critical because Th1 and Th2 cells responded equally well to the T cell mitogen, Con A, and a bacterial superantigen presented by the thymic macrophages.  相似文献   

13.
Interaction of the Ag-specific receptor of T lymphocytes with its Ag/MHC ligand can lead either to cell activation or to a state of unresponsiveness often referred to as anergy. It has been generally assumed that anergy develops as a consequence of inadequate stimulation, such as in response to altered peptide ligands or to agonists presented by costimulatory-deficient accessory cells. The present study uncovers an alternative way of inducing an unresponsive state in T cells. Indeed, we demonstrate herein that Ag-stimulation of murine CD4+ Th clones induces cellular activation, characterized by cytokine production and cell proliferation, followed by a state of transient (lasting up to 6 days) unresponsiveness to further antigenic stimulation. This state of activation-induced unresponsiveness 1) is not a consequence of inadequate costimulation, as it occurs when cells are stimulated in the presence of dendritic cells or anti-CD28 Abs; 2) develops after an optimal response to Ag; 3) is not due to cell death/apoptosis or CTLA-4 engagement; 4) down-regulates the proliferation and cytokine production of both Th1- and Th2-like clones; and 5) does not affect the early steps of signal transduction. Finally, naive T cells are not sensitive to this novel form of unresponsiveness, but become gradually susceptible to activation-induced unresponsiveness upon Ag stimulation. Collectively, these data suggest that activation-induced T cell unresponsiveness may represent a regulatory mechanism limiting the clonal expansion and effector cell function of Ag-experienced T cells, thus contributing to the homeostasis of an immune response.  相似文献   

14.
Clonal anergy is maintained independently of T cell proliferation   总被引:2,自引:0,他引:2  
Ag encounter in the absence of proliferation results in the establishment of T cell unresponsiveness, also known as T cell clonal anergy. Anergic T cells fail to proliferate upon restimulation because of the inability to produce IL-2 and to properly regulate the G(1) cell cycle checkpoint. Because optimal TCR and CD28 engagement can elicit IL-2-independent cell cycle progression, we investigated whether CD3/CD28-mediated activation of anergic T cells could overcome G(1) cell cycle block, drive T cell proliferation, and thus reverse clonal anergy. We show here that although antigenic stimulation fails to elicit G(1)-to-S transition, anti-CD3/CD28 mAbs allow proper cell cycle progression and proliferation of anergic T cells. However, CD3/CD28-mediated cell division does not restore Ag responsiveness. Our data instead indicate that reversal of clonal anergy specifically requires an IL-2-dependent, rapamycin-sensitive signal, which is delivered independently of cell proliferation. Thus, by tracing proliferation and Ag responsiveness of individual cells, we show that whereas both TCR/CD28 and IL-2-generated signals can drive T cell proliferation, only IL-2/IL-2R interaction regulates Ag responsiveness, indicating that proliferation and clonal anergy can be independently regulated.  相似文献   

15.
The chronic immune response in rheumatoid arthritis (RA) might be driven by activated Th1 cells without sufficient Th2 cell differentiation to down-modulate inflammation. To test whether disordered memory T cell differentiation contributes to the typical Th1-dominated chronic inflammation in RA we investigated differentiation of resting CD4+ memory T cells in patients with early (6 wk to 12 mo) untreated RA and in age- and sex-matched healthy controls in vitro. No difference in cytokine secretion profiles of freshly isolated memory T cells was detected between patients and controls. A cell culture system was then employed that permitted the differentiation of Th effectors from resting memory T cells by short term priming. Marked differences were found in response to priming. Th2 cells could be induced in all healthy controls by priming with anti-CD28 in the absence of TCR ligation. By contrast, priming under those conditions resulted in Th2 differentiation in only 9 of 24 RA patients. Exogenous IL-4 could overcome the apparent Th2 differentiation defect in seven patients but was without effect in the remaining eight patients. In all patients a marked decrease in IL-2-producing cells and a significant increase in well-differentiated Th1 cells that produced IFN-gamma but not IL-2 were evident after priming with anti-CD3 and anti-CD28. The data suggest that CD4+ memory T cells from patients with early untreated RA manifest an intrinsic abnormality in their ability to differentiate into specific cytokine-producing effector cells that might contribute to the characteristic Th1-dominated chronic (auto)immune inflammation in RA.  相似文献   

16.
To elucidate the Th cell activation mechanism through the TCR/CD3 complex, we examined the reactivity of T cell clones to soluble monovalent and divalent anti-CD3 without accessory cells or costimulatory factor. All T cell clones tested produced IL-2 in response to monovalent anti-CD3, although reactivity to divalent anti-CD3 was variable depending upon clones. IL-2 production of T cell clones induced by monovalent anti-CD3 was suppressed by cross-linking of the antibody with anti-hamster IgG. IL-2 mRNA expression and the increment of intracellular Ca2+ concentration were consistent with the IL-2 production. When T cell clones were stimulated with monovalent anti-CD3, they increased in size, although divalent anti-CD3 stimulation did not affect their size irrespective of their IL-2 production. These results indicate that monovalent anti-CD3 is more efficient than divalent anti-CD3 in induction of IL-2 production and that the cross-linkage of the TCR/CD3 complex is not necessarily required for the T cell clone activation.  相似文献   

17.
CD8+ T cells can be primed in vitro to produce IL-4.   总被引:19,自引:0,他引:19  
IL-4 production by T lymphocytes from naive mice in response to stimulation by plate-bound anti-CD3 is concentrated among CD4+ T cells. In vitro stimulation of lymph node T cells with anti-CD3 plus IL-2 and IL-4 strikingly increases the frequency of cells that produce IL-4 in response to subsequent stimulation with anti-CD3 plus IL-2. Separation of these primed cell populations into CD4+ and CD8+ T cell by cell sorting reveals that the frequency of IL-4-producing cells in both population is similar. Verification that CD8+ T cells produce IL-4 is provided by the capacity of anti-IL-4 mAb to inhibit the response of the indicator cell line to the growth factor produced by the primed cells and by detection of IL-4 by an IL-4-specific ELISA. The in vitro "priming" of CD8+ T cells to produce IL-4 is not dependent on the presence of CD4+ T cells because highly purified CD8+ T cells can be stimulated to develop into cells capable of producing IL-4 by culture with plate-bound anti-CD3 plus IL-2 and IL-4.  相似文献   

18.
Murine CD4+ T cell clones have been classified into at least two subsets, Th1 and Th2, on the basis of their distinct lymphokine secretion profiles and functions. In the present study, we compared the functional responses of Th1 and Th2 clones to Ag presentation by splenic B cells and peritoneal macrophages. Th2 clones secreted IL-4 in response to Ag presented by resting B cells, but their optimal proliferation required the addition of IL-1 or a source of IL-1. The degree of IL-1 dependence varied among the four Th2 clones examined. In contrast, Th1 clones secreted IL-2 and proliferated in response to Ag presented by both B cells and macrophages, without any requirement for exogenous IL-1. Furthermore, the proliferation of Th2 clones in response to Ag presented by splenocytes or macrophages was inhibited by an IL-1R antagonist. These results indicate that IL-1 is an important costimulator for the expansion of the Th2 subset of CD4+ T cells. The different requirements for the proliferation of Th1 and Th2 cells may be responsible for the preferential expansion of one or the other subset under different conditions of immunization.  相似文献   

19.
20.
We have studied the properties of several developmentally defined subpopulations of CD4+ T cells from normal animals which can be stimulated to secrete lymphokines. We find that the Th cells responsible for direct secretion of lymphokines after stimulation are from a resting, very long lived subpopulation of CD4+ T cells which persists for over 25 wk after adult thymectomy. These T cells are depleted by in vivo administration of antithymocyte serum and they are enriched among T cells which express high levels of Pgp-1. This phenotype suggests that the T cells responsible are most likely memory T cells which have resulted from antigen exposure in vivo. T cells in this subset secrete predominantly IL-2 with small quantities of IL-3, granulocyte/macrophage CSF, and IFN-gamma. In contrast, the CD4+ T cells which require in vitro culture and restimulation before they develop into an effector population with the ability to secrete lymphokines after restimulation, differ dramatically by most of these criteria. The precursors we study are resting Th cells which are considerably shorter lived after adult thymectomy (5 to 10 wk) and resistant to the same doses of antithymocyte serum which deplete the putative memory population. We hypothesize that this precursor population represents naive helper cells which have not yet encountered Ag. The effectors derived from such precursors can be stimulated to secrete high levels of both Th cell types 1 and 2 lymphokines (IFN-gamma, IL-4, IL-5, granulocyte/macrophage CSF, and IL-3). Generation of effectors requires proliferation and differentiation events which occur during a mandatory culture with lymphokines and antigen presenting cells for 3 to 4 days. We discuss the striking phenotypic and functional differences among these subpopulations of helper cells--the precursor population and the two types--memory and cultured effector Th which secrete lymphokines. We also discuss the relationship of these populations to CD4+ T cell subsets defined by other studies of patterns of lymphokine secretion and by cell surface phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号