首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of metallothionein-1 (MT-1) mRNA to the perinuclear cytoskeleton is determined by a signal in the 3′untranslated region (3′UTR) and trans-acting binding proteins. The present study carried out detailed mapping of this signal and further characterized the binding to elongation factor 1 alpha (eEF1α) and other interacting proteins. Electrophoresis mobility shift assays demonstrated that shortening of a stem region proximal to nucleotides 66-76 abrogated binding. Full length recombinant rat eEF1α, and independently domains I and III, formed complexes with the mRNA. Proteins binding to biotinylated MT-1 3′UTR sequences were isolated using RNA-affinity techniques, and mass spectrometry identified histidine-tRNA ligase as one of the major MT-1 3′UTR binding proteins. We conclude that a 5-bp internal stem in the MT-1 3′UTR is critical for binding of eEF1α and histidine-tRNA ligase, and that binding of eEF1α is facilitated through domains I and III.  相似文献   

2.
3.
4.
Several functions have been attributed to protein binding within the 3'untranslated region (3'UTR) of mRNA, including mRNA localization, stability, and translational repression. Vimentin is an intermediate filament protein whose 3'untranslated sequence is highly conserved between species. In order to identify sequences that might play a role in vimentin mRNA function, we synthesized32P-labeled RNA from different regions of vimentin's 3'UTR and assayed for protein binding with HeLa extracts using band shift assays. Sequences required for binding are contained within a region 61-114 nucleotides downstream of the stop codon, a region which is highly conserved from Xenopus to man. As judged by competition assays, binding is specific. Solution probing studies of 32P-labeled RNA with various nucleases and lead support a complex stem and loop structure for this region. Finally, UV cross-linking of the RNA-protein complex identifies an RNA binding protein of 46 kDa. Fractionation of a HeLa extract on a sizing column suggests that in addition to the 46 kDa protein, larger complexes containing additional protein(s) can be identified. Vimentin mRNA has been shown to be localized to the perinuclear region of the cytoplasm, possibly at sites of intermediate filament assembly. To date, all sequences required for localization of various mRNAs have been confined to the 3'UTR. Therefore, we hypothesize that this region and associated protein(s) might be important for vimentin mRNA function such as in localization.  相似文献   

5.
6.
Kolev NG  Huber PW 《Molecular cell》2003,11(3):745-755
Translation of Vg1 mRNA is repressed in Xenopus oocytes until it is localized to the vegetal cortex. Localization and translational repression are mediated by separate elements in the 3'UTR of the mRNA. VgRBP71 binds to the 3' end of the localization element and stimulates cleavage at an adjacent polyadenylation signal. The protein has an RNA strand-separation activity that likely underlies this event. Polyadenylation occurs at this site in Vg1 mRNA with the consequence of removing the downstream translational repressor element. Ectopic expression of VgRBP71 in stage II oocytes results in cleavage of the mRNA and premature expression of Vg1 protein. These results support a model in which VgRBP71 activates translation of Vg1 mRNA by promoting the removal of a cis-acting repressor element.  相似文献   

7.
COLL1alpha mRNA is asymmetrically distributed in the Paracentrotus lividus egg. Here we examine the involvement of the cytoskeleton in the localization process of collagen mRNA. The use of drugs such as colchicine and cytochalasin B reveals a perturbation of localization collagen mRNA. Moreover, the presence of specific cis-and trans-acting factors involved in cytoskeleton binding and the localization process was investigated. By Northwestern experiment we found that the 3'UTR of COLL1alpha mRNA is also able to bind two proteins of 54 and 40 kDa in a cellular fraction containing the cytoskeleton. Finally, we found that the protein of 54 kDa is LP54, a protein that binds the 3'UTRs of P. lividus maternal bep messengers and is necessary for their localization.  相似文献   

8.
The crystal structure of a complex between the protein biosynthesis elongation factor eEF1A (formerly EF-1alpha) and the catalytic C terminus of its exchange factor, eEF1Balpha (formerly EF-1beta), was determined to 1.67 A resolution. One end of the nucleotide exchange factor is buried between the switch 1 and 2 regions of eEF1A and destroys the binding site for the Mg(2+) ion associated with the nucleotide. The second end of eEF1Balpha interacts with domain 2 of eEF1A in the region hypothesized to be involved in the binding of the CCA-aminoacyl end of the tRNA. The competition between eEF1Balpha and aminoacylated tRNA may be a central element in channeling the reactants in eukaryotic protein synthesis. The recognition of eEF1A by eEF1Balpha is very different from that observed in the prokaryotic EF-Tu:EF-Ts complex. Recognition of the switch 2 region in nucleotide exchange is, however, common to the elongation factor complexes and those of Ras:Sos and Arf1:Sec7.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The process of mRNA localization within a specific cytoplasmic region is an integral aspect of the regulation of gene expression. Furthermore, colocalization of mRNAs and their respective translation products may facilitate the proper assembly of multi-subunit complexes like the thick and thin filaments of muscle. This postulate was tested by investigating the cytoplasmic localization of three mRNAs-the alpha-actin, slow troponin C (sTnC), and slow troponin I (sTnI), which encode different poly-peptide partners of the thin filament. Using in situ hybridization we showed that all three thin filament mRNAs are localized in the perinuclear cytoplasm of cultured C2C12 muscle cells. Their localization differs from that of the nonmuscle beta-actin mRNA, which is localized in the peripheral region of both proliferating nondifferentiated myoblasts and the differentiated myocytes. Analysis of the localization signal of the sTnC mRNA showed that a 40-nucleotide-long region of the sTnC mRNA 3' UTR is sufficient to confer the perinuclear localization on a heterologous reporter beta-Gal mRNA. This localization signal showed tissue specificity and worked only in the differentiated myocytes, but not in the proliferating myoblasts or in HeLa cells. The predicted secondary structure of the localization signal suggests the presence of multiple stem and loop structures in this region of the 3' UTR. Mutations within the stem region of the localization signal, which abolish the base pairing in this region, significantly reduced its perinuclear mRNA localization activity. Using UV-induced photo-cross-linking of RNA and proteins we found that a myotube-specific 42-kDa polypeptide binds to the localization signal.  相似文献   

17.
Tau mRNA is axonally localized mRNA that is found in developing neurons and targeted by an axonal localization signal (ALS) that is located in the 3'UTR of the message. The tau mRNA is trafficked in an RNA-protein complex (RNP) from the neuronal cell body to the distal parts of the axon, reaching as far as the growth cone. This movement is microtubule-dependent and is observed as granules that contain tau mRNA and additional proteins. A major protein contained in the granule is HuD, an Elav protein family member, which has an identified mRNA binding site on the tau 3'UTR and stabilizes the tau message and several axonally targeted mRNAs. Using GST-HuD fusion protein as bait, we have identified four proteins contained within the tau RNP, in differentiated P19 neuronal cells. In this work, we studied two of the identified proteins, i.e. IGF-II mRNA binding protein 1 (IMP-1), the orthologue of chick beta-actin binding protein-ZBP1, and RAS-GAP SH3 domain binding protein (G3BP). We show that IMP-1 associates with HuD and G3BP-1 proteins in an RNA-dependent manner and binds directly to tau mRNA. We also show an RNA-dependent association between G3BP-1 and HuD proteins. These associations are investigated in relation to the neuronal differentiation of P19 cells.  相似文献   

18.
Testis-specific protein, Y-encoded (TSPY) binds to eukaryotic translation elongation factor 1 alpha (eEF1A) at its SET/NAP domain that is essential for the elongation during protein synthesis implicated with normal spermatogenesis. The eEF1A exists in two forms, eEF1A1 (alpha 1) and eEF1A2 (alpha 2), encoded by separate loci. Despite critical interplay of the TSPY and eEF1A proteins, literature remained silent on the residues playing significant roles during such interactions. We deduced 3D structures of TSPY and eEF1A variants by comparative modeling (Modeller 9.13) and assessed protein–protein interactions employing HADDOCK docking. Pairwise alignment using EMBOSS Needle for eEF1A1 and eEF1A2 proteins revealed high degree (~92%) of homology. Efficient binding of TSPY with eEF1A2 as compared to eEF1A1 was observed, in spite of the occurrence of significant structural similarities between the two variants. We also detected strong interactions of domain III followed by domains II and I of both eEF1A variants with TSPY. In the process, seven interacting residues of TSPY’s NAP domain namely, Asp 175, Glu 176, Asp 179, Tyr 183, Asp 240, Glu 244, and Tyr 246 common to both eEF1A variants were detected. Additionally, six lysine residues observed in eEF1A2 suggest their possible role in TSPY–eEF1A2 complex formation essential for germ cell development and spermatogenesis. Thus, more efficient binding of TSPY with eEF1A2 as compared to that of eEF1A1 established autonomous functioning of these two variants. Studies on mutated protein following similar approach would uncover the causative obstruction, between the interacting partners leading to deeper understanding on the structure–function relationship.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号