首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Sources of resistance to several potyviruses have been identified and characterized within the cucumber (Cucumis sativus L.) germplasm. Resistance to zucchini yellow mosaic virus (ZYMV) is present in inbred lines derived from the Dutch hybrid Dina (Dina-1) and from the Chinese cultivar ‘Taichung Mou Gua’ (TMG-1). Tests of allelism indicated that the genes for resistance to ZYMV in TMG-1 and Dina-1 are at the same locus; however, the two genotypes exhibited different phenotypes in response to cotyledon inoculation with ZYMV. Dina-1 exhibited a distinct veinal chlorosis and accumulation of virus limited to the first and/or second true leaves, while TMG-1 remained symptom-free and did not accumulate virus. The distinct veinal chlorosis phenotype in Dina-1 was dominant to the symptom-free phenotype in TMG-1 and was shown not to be due to a separate gene. These results indicate that a series of alleles differing in effectiveness and dominance relationships occurs at the zym locus such that Zym>zym Dina>zym TMG-1. In addition to ZYMV resistance, TMG-1 is also resistant to watermelon mosaic virus (WMV), the watermelon strain of papaya ringspot virus (PRSV-W) and the Moroccan watermelon mosaic virus (MWMV); the WMV and MWMV resistances are at the same locus, or tightly linked to the zym locus. Dina-1 also was found to be resistant to PRSV-W and MWMV. The gene for MWMV resistance in Dina-1 appeared to be at the same locus or tightly linked (<1% recombination) to the gene for ZYMV resistance. In contrast to the response to ZYMV inoculation, Dina-1 does not exhibit distinct veinal chlorosis when inoculated with PRSV-W or MWMV. Collectively, these observations suggest that the gene(s) conferring resistance to ZYMV, WMV, and MWMV may be part of a gene cluster for potyvirus resistance in cucumber. Received: 12 November 1996 / Accepted: 25 April 1997  相似文献   

2.
High resistance to zucchini yellow mosaic virus-China strain (ZYMV-CH) and moderate resistance to watermelon mosaic virus (WMV) were found in a selection of PI 595203 (Citrullus lanatus var. lanatus), an Egusi type originally collected in Nigeria. Mixed inoculations showed primarily that these two viruses have no cross-protection. This fact may explain the high frequency of mixed infection often observed in commercial fields. When plants were inoculated with a mixture of the two viruses, the frequency of plants resistant to ZYMV was lower than expected, indicating that WMV infection may reduce the ability of a plant to resist ZYMV. We studied inheritance of resistance to ZYMV-CH and WMV, using crosses between a single-plant selection of PI 595203 and the ZYMV-susceptible watermelon inbreds 9811 and 98R. According to virus ratings of the susceptible parents, the resistant parent, and the F1, F2, and BC1 generations, resistance to ZYMV-CH was conferred by a single recessive gene, for which the symbol zym-CH is suggested. The high tolerance to WMV was controlled by at least two recessive genes.  相似文献   

3.
At least three sources of resistance to the watermelon strain of Papaya ringspot virus (PRSV-W) have been identified in cucumber (Cucumis sativus L.) including: ’TMG-1’, an inbred line derived from the Taiwanese cultivar, ’Taichung Mou Gua’; ’Dina-1’, an inbred line derived from the Dutch hybrid ’Dina’; and the South American cultivar ’Surinam’. In this investigation we sought to determine the inheritance of resistance to PRSV-W in ’Dina-1’, the allelic relationships among the three sources of PRSV-W resistance, and the relationship between PRSV-W resistance and known resistances to other cucurbit potyviruses. Like ’Surinam’ and ’TMG-1’, resistance in ’Dina-1’ is controlled by a single gene. Despite differences in dominance vs recessive performance and patterns of virus accumulation, all three sources of resistance complemented each other. ’TMG-1’ and ’Dina-1’ also possess co-segregating, single-gene resistances to Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus and Moroccan watermelon mosaic virus. Sequential inoculations and F3 family analysis indicated that resistance to PRSV-W completely co- segregated with resistance to ZYMV in ’TMG-1’. Although PRSV-W resistances are at the same locus in both ’TMG-1’ and ’Surinam’, ’Surinam’ is only resistant to PRSV-W, and progeny of ’TMG-1’×’Surinam’ were resistant to PRSV-W but susceptible to ZYMV. Susceptibility to ZYMV and resistance to PRSV-W in ’Surinam’ was not influenced by co-inoculation or sequential in- oculations of the two viruses. Collectively, the co- segregation of resistances to PRSV-W, ZYMV, WMV and MWMV in ’TMG-1’ (within 1 cM), allelism of PRSV-W resistances in ’TMG-1’ and ’Surinam’, and resistance to only PRSV-W in ’Surinam’, suggest that multiple potyvirus resistance in cucumber may be due to different alleles of a single potyvirus resistance gene with differing viral specificities, or that the multiple resistances are conferred by a tightly linked cluster of resistance genes, of which ’Surinam’ only possesses one member. Received: 22 July 1999 / Accepted: 2 December 1999  相似文献   

4.
The mode of inheritance of resistance to Fusarium oxysporum f.sp. cucumerinum races 1 and 2 in Wisconsin-2757 (WI-2757), a gynoecious cucumber (Cucumis sativus L.), was determined by analysing segregation of F1, F2 and BC1 populations of crosses with susceptible cultivar Straight-8. Resistance to either race 1 or race 2 in WI-2757 was conferred by a single dominant gene. In allelism tests, resistance to either race in WI-2757 was determined by the gene Fcu-1, which also confers resistance in line SMR-18.  相似文献   

5.
We have identified monogenic dominant resistance to azuki bean mosaic poty virus (AzMV), passionfruit woodiness potyvirus-K (PWV-K), zucchini yellow mosaic potyvirus (ZYMV), and a dominant factor that conditioned lethal necrosis to Thailand Passiflora potyvirus (ThPV), in Phaseolus vulgaris Black Turtle Soup 1. Resistance to AzMV, PWV-K, ZYMV, watermelon mosaic potyvirus, cowpea aphid-borne mosaic potyvirus, blackeye cowpea mosaic potyvirus, and lethal necrosis to soybean mosaic potyvirus and ThPV cosegregated as a unit with the I gene for resistance to bean common mosaic potyvirus.  相似文献   

6.
7.
A total of 28 inbred lines of Brussels sprout were assessed in the glasshouse for their reaction to inoculation with cauliflower mosaic (CaMV) or turnip mosaic (TuMV) virus. There was significant variation for resistance to both viruses. From the 28 inbred lines parents were chosen for two 9 × 9 diallel crossing programmes. The parents and their F1 progeny were assessed for their reaction to CaMV or TuMV in the field. There was significant additive and non-additive (dominance) variation but no maternal effects. Resistance to both viruses was generally dominant but with some evidence of a recessive gene for resistance to CaMV. Resistance to TuMV and CaMV was apparently controlled by at least four genes and two genes respectively. The heritability of resistance to each virus was high. The implications for breeding F1 hybrid Brussels sprout cultivars are discussed.  相似文献   

8.
9.
We have examined the genetics of systemic resistance in Phaseolus vulgaris to azuki bean mosaic virus (AzMV) and cowpea aphid-borne mosaic virus (CABMV) and the relationship of this resistance to a phenotypically similar resistance to watermelon mosaic virus (WMV) and soybean mosaic virus (SMV). In P. vulgaris cv Great Northern 1140 (GN1140), resistance to SMV and WMV has been attributed to the genes Smv and Wmv, respectively, which have been shown to segregate as a unit. Systemic resistance to AzMV is conferred by two incompletely dominant alleles, Azm1 and Azm2, at unlinked loci. At least three resistance alleles must be present at these two loci for systemic resistance to be expressed in the plant. Systemic resistance to CABMV in GN 1140 is conditioned by a dominant allele that has been designated Cam2. Under some environmental conditions, a recessive allele at an unlinked locus, cam3, also controls a resistant response to CABMV. Resistance to AzMV and CABMV does not assort independently from Wmv/Smv, but also does not consistently cosegregate, suggesting that perhaps in each case one of the factors involved in resistance is associated with Smv/Wmv.  相似文献   

10.
‘True French’ is an open‐pollinated cultivar of the Zucchini (Courgette) Group of Cucurbita pepo and is susceptible to Zucchini yellow mosaic virus (ZYMV). Using C. moschata‘Menina’ as the source of ZYMV resistance and following six generations of backcrossing, a true‐breeding line nearly isogenic to ‘True French’, designated 381e, was recovered that carried ZYMV resistance, albeit not at as high a level as in ‘Menina’. ‘True French’ and accession 381e were crossed, and their reciprocal F1, F2, and backcross progenies were grown in a chamber and inoculated with a highly virulent, non‐aphid‐transmissible strain of ZYMV. Nearly all F1 plants and all plants of the backcross to 381e were classified as resistant. Segregation to resistant and susceptible individuals occurred in the backcross to the susceptible parent, in accordance with a 3:5 three‐gene ratio of resistant: susceptible. The F2 segregated in accordance with a ratio of 45 resistant : 19 susceptible, which would be obtained if there was one major gene for resistance, Zym‐1 (Zym), and two other genes, herein designated Zym‐2 and Zym‐3, both of which for complementary to Zym‐1. The presence of Zym‐1 and either Zym‐2 or Zym‐3 is necessary for resistance to be expressed in young plants, but the presence of all three might be necessary for resistance to continue to be expressed during subsequent development of the plants. Evidently, Zym‐2 and Zym‐3 are ubiquitous in C. moschata but their susceptible alleles are much more common in C. pepo. As the level of resistance of 381e to ZYMV is not as high as that of C. moschata‘Menina’, additional, as yet unidentified, genes must be involved in conferring high resistance to this virus.  相似文献   

11.

Key message

Using a high-resolution mapping approach, we identified a candidate gene for ZYMV resistance in cucumber. Our findings should assist the development of high-versatility molecular markers for MAS for ZYMV resistance.

Abstract

Zucchini yellow mosaic virus (ZYMV) causes significant disease, which leads to fruit yield loss in cucurbit crops. Since ZYMV resistance is often inherited recessively in cucumber, marker-assisted selection (MAS) is a useful tool for the development of resistant cucumber cultivars. Using 128 families of an F2:3 population derived from a cross between susceptible ‘CS-PMR1’ and resistant ‘A192-18’ cucumber inbred lines, we confirmed that ZYMV resistance is conferred by a single recessive locus: zym A192-18 . We constructed a cucumber genetic linkage map that included 125 simple sequence repeat (SSR) markers segregating into 7 linkage groups (chromosomes). The zym A192-18 locus was mapped to chromosome 6, at genetic distances of 0.9 and 1.3 cM from two closely linked SSR markers. For high-resolution genetic mapping, we identified new molecular markers cosegregating with the zym A192-18 locus; using cucumber genomic and molecular marker resources and screening an F2 population of 2,429 plants, we narrowed down the zym A192-18 locus to a <50-kb genomic region flanked by two SSR markers, which included six candidate genes. Sequence analysis of the candidate genes’ coding regions revealed that the vacuolar protein sorting-associated protein 4-like (VPS4-like) gene had two SNPs between the parental lines. Based on SNPs of the VPS-4-like gene, we developed zym A192-18 -linked DNA markers and found that genotypes associated with these markers were correlated with the ZYMV resistance phenotype in 48 cucumber inbred lines. According to our data, the gene encoding VPS4-like protein is a candidate for the zym A192-18 locus. These results may be valuable for MAS for ZYMV resistance in cucumber.  相似文献   

12.
13.
Arabidopsis thaliana represents a valuable and efficient model to understand mechanisms underlying plant susceptibility to viral diseases. Here, we describe the identification and molecular cloning of a new gene responsible for recessive resistance to several isolates of Watermelon mosaic virus (WMV, genus Potyvirus) in the Arabidopsis Cvi‐0 accession. rwm1 acts at an early stage of infection by impairing viral accumulation in initially infected leaf tissues. Map‐based cloning delimited rwm1 on chromosome 1 in a 114‐kb region containing 30 annotated genes. Positional and functional candidate gene analysis suggested that rwm1 encodes cPGK2 (At1g56190), an evolutionary conserved nucleus‐encoded chloroplast phosphoglycerate kinase with a key role in cell metabolism. Comparative sequence analysis indicates that a single amino acid substitution (S78G) in the N‐terminal domain of cPGK2 is involved in rwm1‐mediated resistance. This mutation may have functional consequences because it targets a highly conserved residue, affects a putative phosphorylation site and occurs within a predicted nuclear localization signal. Transgenic complementation in Arabidopsis together with virus‐induced gene silencing in Nicotiana benthamiana confirmed that cPGK2 corresponds to rwm1 and that the protein is required for efficient WMV infection. This work uncovers new insight into natural plant resistance mechanisms that may provide interesting opportunities for the genetic control of plant virus diseases.  相似文献   

14.
 Sugarcane mosaic virus (SCMV) causes considerable damage to maize (Zea mays L.) in Europe. The objective of the present study was to determine the genetic basis of resistance to SCMV in European maize germplasm and to compare it with that of U.S. inbred Pa405. Three resistant European inbreds D21, D32, and FAP1360A were crossed with four susceptible inbreds F7, KW1292, D408, and D145 to produce four F2 populations and three backcrosses to the susceptible parent. Screening for SCMV resistance in parental inbreds and segregating generations was done in two field trials as well as under greenhouse conditions. RFLP markers umc85, bnl6.29, umc10, umc44, and SSR marker phi075 were used in F2 populations or F3 lines to locate the resistance gene(s) in the maize genome. Segregation in the F2 and backcross generations fitted to different gene models depending on the environmental conditions and the genotype of the susceptible parent. In the field tests, resistance in the three resistant European inbreds seems to be controlled by two to three genes. Under greenhouse conditions, susceptibility to SCMV in D32 appears to be governed by one dominant and one recessive gene. Allelism tests indicated the presence of a common dominant gene (denoted as Scm1) in all three resistant European inbreds and Pa405. Marker analyses mapped two dominant genes: Scm1 on chromosome 6S and Scm2 on chromosome 3. Received: 17 November 1997 / Accepted: 25 November 1997  相似文献   

15.
A population of recombinant inbred lines (RIL) derived from a cross between the Watermelon mosaic virus (WMV) resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’ has been evaluated for WMV resistance in spring, fall and growth chamber conditions. The quantitative trait loci (QTL) analyses detected one major QTL (wmv) on linkage group (LG) XI close to the microsatellite marker CMN04_35. This QTL controls the resistance to WMV in the three environmental conditions evaluated. Other minor QTLs affecting the severity of viral symptoms were identified, but they were not detected in all the assayed environments. The screening of the marker CMN04_35 in an F2 progeny, derived from the same cross, confirmed the effect of this QTL on the expression of WMV resistance also in early generations, which evidences the usefulness of this marker for a marker assisted selection program.  相似文献   

16.
Summary Resistance to watermelon mosaic virus-2 in Phaseolus vulgaris L. is conferred by two distinct dominant alleles at independent loci. Based on segregation data one locus is designated Wmv, the other, Hsw. The dominant allele Wmv from cv. Great Northern 1140 prevents systemic spread of the virus but viral replication occurs in inoculated tissue. In contrast, Hsw confers both local and systemic resistance to WMV-2 below 30C. At higher temperatures, plants that carry this allele in the absence of modifying or epistatic factors develop systemic veinal necrosis upon inoculation with the virus that results in rapid death. Patho-type specificity has not been demonstrated for either allele; both factors confer resistance to every isolate tested. A temperature-sensitive shift in epistasis is apparent between dominant alleles at these loci. Because Hsw is very tightly linked if not identical to the following genes for hypersensitivity to potyviruses I, (bean common mosaic virus), Bcm, (blackeye cowpea mosaic virus), Cam, (cowpea aphid-borne mosaic virus) and Hss (soybean mosaic virus), parental, reciprocal dihybrid F1 populations, and selected F3 families were inoculated with each of these viruses and held at 35 C. F1 populations developed vascular necrosis completely or primarily limited to inoculated tissue, while F3 families from WMV-2-susceptible segregates were uniformly susceptible to these viruses. The relationship between Hsw, Wmv and other genes for potyvirus resistance suggest patterns in the evolution of resistance and viral pathogenicity. Characterization of the resistance spectrum associated with each factor provides an additional criterion to distinguish genes for plant virus resistance.  相似文献   

17.
18.
Yang  Xiangdong  Niu  Lu  Zhang  Wei  He  Hongli  Yang  Jing  Xing  Guojie  Guo  Dongquan  Zhao  Qianqian  Zhong  Xiaofang  Li  Haiyun  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):129-140

Viruses constitute a major constraint to soybean production worldwide and are responsible for significant yield losses every year. Although varying degrees of resistance to specific viral strains has been identified in some soybean genetic sources, the high rate of mutation in viral genomes and mixed infections of different viruses or strains under field conditions usually hinder the effective control of viral diseases. In the present study, we generated transgenic soybean lines constitutively expressing the double-strand RNA specific ribonuclease gene PAC1 from Schizosaccharomyces pombe to evaluate their resistance responses to multiple soybean-infecting virus strains and isolates. Resistance evaluation over three consecutive years showed that the transgenic lines displayed significantly lower levels of disease severity in field conditions when challenged with soybean mosaic virus (SMV) SC3, a prevalent SMV strain in soybean-growing regions of China, compared to the non-transformed (NT) plants. After inoculation with four additional SMV strains (SC7, SC15, SC18, and SMV-R), and three isolates of bean common mosaic virus (BCMV), watermelon mosaic virus (WMV), and bean pod mottle virus (BPMV), the transgenic plants exhibited less severe symptoms and enhanced resistance to virus infections relative to NT plants. Consistent with these results, the accumulation of each virus isolate was significantly inhibited in transgenic plants as confirmed by quantitative real-time PCR and double antibody sandwich enzyme-linked immunosorbent assays. Collectively, our results showed that overexpression of PAC1 can increase multiple virus resistance in transgenic soybean, and thus provide an efficient control strategy against RNA viruses such as SMV, BCMV, WMV, and BPMV.

  相似文献   

19.
20.
Resistance to Yam mosaic virus (YMV) in tetraploid white yam (Dioscorea rotundatd) is inherited differentially as a dominant and recessive character. Elite D. rotundata breeding lines with durable resistance to YMV can be developed by pyramiding major dominant and recessive genes using marker‐assisted selection (MAS). The tetraploid breeding line, TDr 89/01444, is a source of dominant genetic resistance to yam mosaic disease. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to YMV resistance in F1 progeny derived from a cross between TDr 89/01444 and the susceptible female parent, TDr 87/00571. The F1 progeny segregated 1:1 (resistantsusceptible) when inoculated with a Nigerian isolate of YMV, confirming that resistance to YMV in TDr 89/01444 was dominantly inherited. A single locus that contributes to YMV resistance in TDr 89/01444 was identified and tentatively named Ymv‐1. Two RAPD markers closely linked in coupling phase with Ymv‐1 were identified, both of which were mapped on the same linkage group: OPW18850 (3.0 centiMorgans [cM]) and OPX15850 (2.0 cM). Both markers successfully identified Ymv‐1 in resistant genotypes among 12 D. rotundata varieties and in resistant F1 individuals from the cross TDr 93–1 × TDr 877 00211, indicating their potential for use in marker‐assisted selection. OPW18850 and OPX15850 are the first DNA markers for YMV resistance and represent a starting point in the use of molecular markers to assist breeding for resistance to YMV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号