首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graser G  Hartmann T 《Planta》2000,211(2):239-245
 The polyamine spermidine is an essential biosynthetic precursor of pyrrolizidine alkaloids. It provides its aminobutyl group which is transferred to putrescine yielding homospermidine, the specific building block of the necine base moiety of pyrrolizidine alkaloids. The enzymatic formation of spermidine was studied in relation to the unique role of this polyamine as an alkaloid precursor. S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) and spermidine synthase (SPDS, EC 2.5.1.16) from root cultures of Senecio vulgaris were partially purified and characterized. The SAMDC-catalyzed reaction showed a pH optimum of 7.5, that of SPDS an optimum of 7.7. The K m value of SAMDC for its substrate S-adenosylmethionine (SAM) was 15 μM, while the apparent K m values of SPDS for its substrates decarboxylated SAM (dSAM) and putrescine were 4 μM and 21 μM, respectively. The relative molecular masses of the two enzymes, determined by gel filtration, were 29 000 (SAMDC) and 37 000 (SPDS). Studies with various potential inhibitors revealed, for most inhibitors, profiles that were similar to those established with the respective enzymes from other plant sources. However, putrescine which is not known to be an inhibitor of plant SAMDC, strongly inhibited the enzyme from S. vulgaris roots. Spermidine synthase was sensitive to inhibition by its product spermidine. In the presence of the stationary tissue concentrations of the two polyamines (ca. 0.1 mM each) the activities of SAMDC and SPDS would be inhibited by >80%. The results are discussed in relation to the role of spermidine in primary and secondary metabolism of alkaloid-producing S. vulgaris root cultures. Received: 15 September 1999 / Accepted 10 December 1999  相似文献   

2.
S-adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the biosynthesis of the polyamines spermidine and spermine. Polyamines are ubiquitous organic cations that are absolutely required for normal cell proliferation and differentiation. AdoMetDC catalyzes decarboxylation of S-adenosylmethionine (AdoMet) which provides aminopropyl groups for spermidine and spermine synthesis. Mammalian AdoMetDC is produced as a proenzyme (38 kDa) which is cleaved to form the alpha (30.7 kDa) and beta (7.7 kDa) subunits of the mature enzyme. It is here shown that the catalytic activity of the enzyme was completely eliminated when lysine 12 was mutated to an arginine residue in the small subunit; however, the proenzyme processing was not affected. On the other hand, mutations of other lysine residues (Lys45-->Arg and Lys56-->Arg) did not affect either the enzyme activity or the proenzyme processing. Structure analysis using Swiss Deep Viewer v3.7 has indicated that Arg in place of Lys12 may eliminate AdoMetDC activity by restricting the mobility of Thr85 through hydrogen bonding. Sequence alignment of various AdoMetDC sequences indicated that Thr85 is in a highly conserved region, suggesting that Thr85 is critical for the decarboxylation reaction.  相似文献   

3.
 During the isolation of mutations in the heat-inducible hsp70-1 gene of Neurospora crassa by RIP (repeat-induced point mutations), several transformants were generated by electroporation of conidia with a plasmid harboring an incomplete copy of this gene. One isolate, designated E-45, containing ectopically integrated hsp70-1 DNA, exhibited a slow growth rate, low-temperature sensitivity, constitutive thermotolerance (without prior heat shock), and high constitutive peroxidase activity. The constitutive form of peroxidase (CP) was distinguishable from the heat-inducible form (HIP) by immunoinactivation employing polyclonal antiserum against the latter enzyme and by electrophoretic resolution in nondenaturing polyacrylamide gels. This enzyme was purified to near homogeneity and some of its properties examined. The relative molecular mass of native CP was in the range of 118–136 kDa, as estimated by gel filtration analysis on size exclusion matrices, whereas SDS-PAGE analysis yielded a size of ∼37 kDa for the polypeptide. Substrate saturation kinetics studies were conducted using ABTS [2,2′-azino-bis (3-ethylbenzthiazole-6-sulfonic acid)] and H2O2 as substrates: K m, V max, and K cat values for H2O2 were ∼22 μM, ∼447 nmol mg−1, and 0.33 s−1, respectively, and those for ABTS were ∼55 μM, ∼453 nmol mg−1, and 0.3 s−1, respectively. Guaiacol was not used as a substrate by this enzyme. CP peroxidase was shown to be a heme-containing enzyme, stable at temperatures up to 58°C. Received: August 5, 2002 / Accepted: January 22, 2003 Acknowledgments This work was supported by an operating grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (to M.K.). The financial support provided to A. M. in the form of a graduate studentship award by the AHFMR (Alberta Heritage Foundation for Medical Research) and of a graduate teaching assistantship to A. S. by the Department of Biological Sciences, University of Calgary, is gratefully acknowledged. Correspondence to:M. Kapoor  相似文献   

4.
A gene encoding a putrescine oxidase (PuORh, EC 1.4.3.10) was identified from the genome of Rhodococcus erythropolis NCIMB 11540. The gene was cloned in the pBAD vector and overexpressed at high levels in Escherichia coli. The purified enzyme was shown to be a soluble dimeric flavoprotein consisting of subunits of 50 kDa and contains non-covalently bound flavin adenine dinucleotide as a cofactor. From all substrates, the highest catalytic efficiency was found with putrescine (K M = 8.2 μM, k cat = 26 s−1). PuORh accepts longer polyamines, while short diamines and monoamines strongly inhibit activity. PuORh is a reasonably thermostable enzyme with t 1/2 at 50°C of 2 h. Based on the crystal structure of human monoamine oxidase B, we constructed a model structure of PuORh, which hinted to a crucial role of Glu324 for substrate binding. Mutation of this residue resulted in a drastic drop (five orders of magnitude) in catalytic efficiency. Interestingly, the mutant enzyme showed activity with monoamines, which are not accepted by wt-PuORh. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We have mapped the positions in a ∼1.4-Mb region of genomic DNA around the human hprt gene which are accessible in vivo to cleavage by topoisomerase II associated with the nuclear matrix. These positions, which are interpreted as the boundaries of DNA loop domains, were mapped in K562 cells by examining the truncation of rare-cutter restriction fragments separated by pulsed field gel electrophoresis after topoisomerase II-mediated cleavage, using seven linked markers mapped in this region as probes for indirect end-labeling. Eleven cleavage positions were detected and were interpreted as defining ten loop domains of lengths between 70 and 210 kb (average ∼135 kb); the hprt gene resides in a 150-kb loop domain. Loop domain boundaries coincided with three of the fifteen deletion breakpoints mapped in a 600-kb sector of this region in human lymphocytes, within the limits of resolution of pulsed field gel electrophoresis; this correlation was not statistically significant. Received: 14 June 1998 / Accepted: 4 September 1998  相似文献   

6.
S-adenosylmethionine decarboxylase (AdoMetDC) is a critical enzyme in the polyamine biosynthetic pathway and a subject of many structural and biochemical investigations for anti-cancer and anti-parasitic therapy. The enzyme undergoes an internal serinolysis reaction as a post-translational modification to generate the active site pyruvoyl group for the decarboxylation process. The crystal structures of AdoMetDC from Homo sapiens, Solanum tuberosum, Thermotoga maritima, and Aquifex aeolicus have been determined. Numerous crystal structures of human AdoMetDC and mutants have provided insights into the mechanism of autoprocessing, putrescine activation, substrate specificity, and inhibitor design to the enzyme. The comparison of the human and potato enzyme with the T. maritima and A. aeolicus enzymes supports the hypothesis that the eukaryotic enzymes evolved by gene duplication and fusion. The residues implicated in processing and activity are structurally conserved in all forms of the enzyme, suggesting a divergent evolution of AdoMetDC.  相似文献   

7.
Torulene, a C40 carotene, is the precursor of the end product of the Neurospora carotenoid pathway, the C35 xanthophyll neurosporaxanthin. Torulene is synthesized by the enzymes AL-2 and AL-1 from the precursor geranylgeranyl diphosphate and then cleaved by an unknown enzyme into the C35 apocarotenoid. In general, carotenoid cleavage reactions are catalyzed by carotenoid oxygenases. Using protein data bases, we identified two putative carotenoid oxygenases in Neurospora, named here CAO-1 and CAO-2. A search for novel mutants of the carotenoid pathway in this fungus allowed the identification of two torulene-accumulating strains, lacking neurosporaxanthin. Sequencing of the cao-2 gene in these strains revealed severe mutations, pointing to a role of CAO-2 in torulene cleavage. This was further supported by the identical phenotype found upon targeted disruption of cao-2. The biological function was confirmed by in vitro assays using the purified enzyme, which cleaved torulene to produce β-apo-4′-carotenal, the corresponding aldehyde of neurosporaxanthin. The specificity of CAO-2 was shown by the lack of γ-carotene-cleaving activity in vitro. As predicted for a structural gene of the carotenoid pathway, cao-2 mRNA was induced by light in a WC-1 and WC-2 dependent manner. Our data demonstrate that CAO-2 is the enzyme responsible for the oxidative cleavage of torulene in the neurosporaxanthin biosynthetic pathway.  相似文献   

8.
Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to d-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be ∼28 kDa by sodium dodecyl sulfate-polyacrylamide gel and ∼58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65°C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k cat of 4.83 s−1 for NADH (k cat/K m = 27.3 s−1 mM−1) and k cat of 2.79 s−1 for NADPH (k cat/K m = 10.8 s−1 mM−1). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.  相似文献   

9.
Clyne T  Kinch LN  Phillips MA 《Biochemistry》2002,41(44):13207-13216
S-Adenosylmethionine decarboxylase (AdoMetDC) is a pyruvoyl-dependent enzyme that is processed from a single polypeptide into two subunits creating the cofactor. In the human enzyme, both the proenzyme processing reaction and enzyme activity are stimulated by the polyamine putrescine. The processing reaction of Trypanosoma cruzi AdoMetDC was studied in an in vitro translation system. The enzyme was fully processed in the absence of putrescine, and the rate of this reaction was not stimulated by addition of the polyamine. Residues in the putrescine binding site of the human enzyme were evaluated for their role in processing of the T. cruzi enzyme. The E15A, I80K/S178E, D174A, and E256A mutant T. cruzi enzymes were fully processed. In contrast, mutation of R13 to Leu (the equivalent residue in the human enzyme) abolished processing of the T. cruzi enzyme, demonstrating that Arg at position 13 is a major determinant for proenzyme processing in the parasite enzyme. This amino acid change is a key structural difference that is likely to be a factor in the finding that putrescine has no role in processing of the T. cruzi enzyme. In contrast, the activity of T. cruzi AdoMetDC is stimulated by putrescine. Equilibrium sedimentation experiments demonstrated that putrescine does not alter the oligomeric state of the enzyme. The putrescine binding constant for binding to the T. cruzi enzyme (K(d) = 150 microM) was measured by a fluorescence assay and by ultrafiltration with a radiolabeled ligand. The mutant T. cruzi enzyme D174V no longer binds putrescine, and is not activated by the diamine. In contrast, mutation of E15, S178, E256, and I80 had no effect on putrescine binding. The k(cat)/K(m) values for E15A and E256A mutants were stimulated by putrescine to a smaller extent than the wild-type enzyme (2- and 4-fold vs 11-fold, respectively). These data suggest that the putrescine binding site on the T. cruzi enzyme contains only limited elements (D174) in common with the human enzyme and that the diamine plays different roles in the function of the mammalian and parasite enzymes.  相似文献   

10.
The effects of CGP 48664 and DFMO, selective inhibitors of the key enzymes of polyamine biosynthesis, namely, ofS-adenosylmethionine decarboxylase (AdoMetDC) and ornithine decarboxylase (ODC), were investigated on growth, polyamine metabolism, and DNA methylation in the Caco-2 cell line. Both inhibitors caused growth inhibition and affected similarly the initial expression of the differentiation marker sucrase. In the presence of the AdoMetDC inhibitor, ODC activity and the intracellular pool of putrescine were enhanced, whereas the spermidine and spermine pools were decreased. In the presence of the ODC inhibitor, the AdoMetDC activity was enhanced and the intracellular pools of putrescine and spermidine were decreased. With both compounds, the degree of global DNA methylation was increased. Spermine and spermidine (but not putrescine) selectively inhibited cytosine–DNA methyltransferase activity. Our observations suggest that spermidine (and to a lesser extent spermine) controls DNA methylation and may represent a crucial step in the regulation of Caco-2 cell growth and differentiation.  相似文献   

11.
BACKGROUND: S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine synthetic pathway, and a well-studied drug target. The AdoMetDC decarboxylation reaction depends upon a pyruvoyl cofactor generated via an intramolecular proenzyme self-cleavage reaction. Both the proenzyme-processing and substrate-decarboxylation reactions are allosterically enhanced by putrescine. Structural elucidation of this enzyme is necessary to fully interpret the existing mutational and inhibitor-binding data, and to suggest further experimental studies. RESULTS: The structure of human AdoMetDC has been determined to 2.25 A resolution using multiwavelength anomalous diffraction (MAD) phasing methods based on 22 selenium-atom positions. The quaternary structure of the mature AdoMetDC is an (alpha beta)2 dimer, where alpha and beta represent the products of the proenzyme self-cleavage reaction. The architecture of each (alpha beta) monomer is a novel four-layer alpha/beta-sandwich fold, comprised of two antiparallel eight-stranded beta sheets flanked by several alpha and 3(10) helices. CONCLUSIONS: The structure and topology of AdoMetDC display internal symmetry, suggesting that this protein may be the product of an ancient gene duplication. The positions of conserved, functionally important residues suggest the location of the active site and a possible binding site for the effector molecule putrescine.  相似文献   

12.
S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme of the polyamine synthetic pathway providing decarboxylated S-adenosylmethionine for the formation of spermidine and spermine, respectively. The catalytic activity of the AdoMetDC from the free-living nematode Caenorhabditis elegans highly depends on the presence of an activator molecule. Putrescine, a well-known stimulator of mammalian AdoMetDC activity, enhances the catalytic activity of the nematode enzyme 350-fold. Putrescine stimulation is discussed as a regulatory mechanism to relate putrescine abundance with the synthesis of spermidine and spermine. In contrast to any other known AdoMetDC, spermidine and spermine also represent significant activators of the nematode enzyme. However, the biological significance of the observed stimulation by these higher polyamines is unclear. Although C. elegans AdoMetDC exhibits a low specificity toward activator molecules, the amino acid residues that were shown to be involved in putrescine binding of the human enzyme are conserved in the nematode enzyme. Exchanging these residues by site-directed mutagenesis indicates that at least three residues, Thr192, Glu194 and Glu274, most likely contribute to activator binding in the C. elegans AdoMetDC. Interestingly, the mutant Glu194Gln exhibits a 100-fold enhanced basal activity in the absence of any stimulator, suggesting that this mutant protein mimics the conformational change usually induced by activator molecules. Furthermore, site-directed mutagenesis revealed that at least Glu33, Ser83, Arg91 and Lys95 are involved in posttranslational processing of C. elegans AdoMetDC.  相似文献   

13.
Ornithine decarboxylase (ODC) is subject to feedback regulation by the polyamines. Thus, addition of putrescine, spermidine or spermine to cells causes inhibition of ODC mRNA translation. Putrescine and spermine are readily converted into spermidine. Therefore, it is conceivable that the inhibition of ODC synthesis observed in putrescine- and spermine-supplemented cells is instead an effect of spermidine. To examine this possibility we have used two analogs of putrescine and spermine, namely 1,4-dimethylputrescine and 5,8-dimethylspermine, which cannot be converted into spermidine. Both analogs were found to inhibit the incorporation of [35S]methionine into ODC protein to approximately the same extent, suggesting that putrescine as well as spermine exert a negative feedback control of ODC mRNA translation in the cell. In addition to suppressing ODC synthesis, both analogs were found to increase the turnover rate of the enzyme. 5,8-Dimethylspermine caused a marked decrease in the activity of S-adenosylmethionine decarboxylase (AdoMetDC). This effect was not obtained with 1,4-dimethylputrescine, indicating that spermine, but not putrescien, exerts a negative control of AdoMetDC. Treatment with 1,4-dimethylputrescine caused extensive depletion of the cellular putrescine and spermidine content, but accumulation of spermine. 5,8-Dimethylspermine treatment, on the other hand, effectively depleted the spermine content and had less effect on the putrescine and spermidine content, at least initially. Nevertheless, the total polyamine content was more extensively reduced by treatment with 5,8-dimethylspermine than with 1,4-dimethylputrescine. Accordingly, only 5,8-dimethylspermine treatment exerted a significant inhibitory effect on Ehrlich ascites tumor cell growth.  相似文献   

14.
A genomic DNA library of the bacterium Bacillus pumilus PLS was constructed and the β-xylosidase gene (xynB) was amplified from a 3-kb genomic DNA fragment with the aid of the polymerase chain reaction technique. The amplified xynB gene was inserted between the yeast alcohol dehydrogenase II gene promoter (ADH2 P ) and terminator (ADH2 T ) sequences on a multicopy episomal plasmid (pDLG11). The xynB gene was also fused in-frame to the secretion signal sequence of the yeast mating pheromone α-factor (MFα1 S ) before insertion between the ADH2 P and ADH2 T sequences on a similar multicopy episomal plasmid (pDLG12). The resulting construct ADH2 P -MFα1 S -xynB-ADH2 T was designated XLO1. Both plasmids pDLG11 and pDLG12 were introduced into Saccharomyces cerevisiae but only the expression of the XLO1 gene yielded biologically functional β-xylosidase. The total β-xylosidase activity remained cell-associated with a maximum activity of 0.09 nkat/ml obtained when the recombinant S. cerevisiae strain was grown for 143 h in synthetic medium. The temperature and pH optima of the recombinant Xlo1 enzyme were 45–50 °C and pH 6.6 respectively. The enzyme was thermostable at 45 °C; however, at 60 °C most of the Xlo1 was inactive after 5 min. Received: 11 July 1996 / Received revision: 23 October 1996 / Accepted: 25 October 1996  相似文献   

15.
A cloned cDNA, generated from mRNA isolates of phosphate-derepressed H. polymorpha cells, was identified to harbour an incomplete sequence of the coding region for a repressible acid phosphatase. The cDNA fragment served as a probe to screen a plasmid library of H. polymorpha genomic DNA. A particular clone, p606, of a 1.9-kb insert contained a complete copy of the PHO1 gene. Sequencing revealed the presence of a 1329-nucleotide open reading frame encoding a protein of 442 amino acids with a calculated M r of 49400. The␣encoded protein has an N-terminal 17-amino-acid secretory leader sequence and seven potential N-glycosylation sites. The leader cleavage site was confirmed by N-terminal sequencing of the purified enzyme. The nucleotide sequence is 48.9% homologous, the derived amino acid sequence 36% homologous to its Saccharomyces cerevisiae counterpart. The derived amino acid sequence harbours a consensus sequence RHGXRXP, previously identified as a sequence involved in active-site formation of acid phosphatases. The PHO1 promoter and the secretion leader sequence present promising new tools for heterologous gene expression. Received: 15 January 1998 / Received revision: 2 March 1998 / Accepted: 4 March 1998  相似文献   

16.
Various concentrations of isopropyl β-d-thiogalactopyranoside (IPTG) were used to induce production of the enzyme penicillin G acylase by recom binant Escherichia coli harboring plasmid pQEA11. The plasmid pQEA11 carries a wild-type pga gene, which is under the control of the tac promoter and lacIq. At low IPTG concentrations (0.025 – 0.1 mM), enzyme activity increased with increasing IPTG concentrations. At higher IPTG concentrations (0.2 and 0.5 mM), enzyme activity declined progressively. Examination of induced recombinant E. coli cells by transmission electron microscopy showed the presence of only periplasmic inclusion bodies at low IPTG concentrations (up to 0.1 mM) and both periplasmic and cytoplasmic inclusion bodies at high IPTG concentrations (0.2 mM and 0.5 mM). Results from sodium dodecyl sulfate/polyacrylamide gel electrophoresis and immunoblots of whole-cell proteins, membrane proteins and inclusion body proteins in these cells indicated that cytoplasmic inclusion bodies constituted an accumulation of preproenzyme (i.e., precursor polypeptide containing a signal peptide) and that periplasmic inclusion bodies constituted an accumulation of proenzyme (i.e., precursor polypeptide lacking a signal peptide). Received: 27 March 1996 / Received revision: 2 July 1996 / Accepted: 10 November 1996  相似文献   

17.
A new ion-selective liquid membrane microelectrode, based on the neutral carrier 1,1′-bis(2,3-naphtho-18-crown-6), is described that shows the dependence of EMF on the activity of divalent putrescine cations a Put, with the linear slope s Put = 26 ± 3 mV/decade (mean ± SD, N = 18), in the range 10−4–10−1 M at 25 ± 1 °C. Values of potentiometric putrescine cation selectivity coefficients of logK Pot Put j (mean ± SD, N) are obtained by the separate solution method for the ions K+ (1.0 ± 0.4, 10), Na+ (−1.2 ± 0.4, 8), Ca2+ (−2.3 ± 0.5, 10) and Mg2+ (−2.5 ± 0.5, 7). The microelectrode can be applied for the direct analysis of the activities of free divalent putrescine cations in the range 5 × 10−4 to 10−1 M in an extracellular ionic environment. Established analytical methods, e.g. high performance liquid chromatography, determine the total concentration of the derivatives of free and bound putrescine. Received: 20 December 1998 / Revised version: 7 May 1999 / Accepted: 27 May 1999  相似文献   

18.
An NAD+-dependent xylitol dehydrogenase from Rhizobium etli CFN42 (ReXDH) was cloned and overexpressed in Escherichia coli. The DNA sequence analysis revealed an open reading frame of 1,044 bp, capable of encoding a polypeptide of 347 amino acid residues with a calculated molecular mass of 35,858 Da. The ReXDH protein was purified as an active soluble form using GST affinity chromatography. The molecular mass of the purified enzyme was estimated to be ∼34 kDa by sodium dodecyl sulfate–polyacrylamide gel and ∼135 kDa with gel filtration chromatography, suggesting that the enzyme is a homotetramer. Among various polyols, xylitol was the preferred substrate of ReXDH with a K m = 17.9 mM and kcat /K m = 0.5 mM−1 s−1 for xylitol. The enzyme had an optimal pH and temperature of 9.5 and 70 °C, respectively. Heat inactivation studies revealed a half life of the ReXDH at 40 °C of 120 min and a half denaturation temperature (T 1/2) of 53.1 °C. ReXDH showed the highest optimum temperature and thermal stability among the known XDHs. Homology modeling and sequence analysis of ReXDH shed light on the factors contributing to the high thermostability of ReXDH. Although XDHs have been characterized from several other sources, ReXDH is distinguished from other XDHs by its high thermostability.  相似文献   

19.
The genetics of polyamine synthesis in Neurospora crassa   总被引:3,自引:0,他引:3  
New mutations of the polyamine pathway of Neurospora crassa fell into three categories. The majority affected ornithine decarboxylase and lay at the previously defined spe-1 locus. One mutation, JP100, defining the new spe-2 locus, eliminated S-adenosyl-methionine decarboxylase and led to putrescine accumulation. Revertants of this mutation suggested that the locus encodes the enzyme. Two other mutations, LV105 and JP120, defined a third locus, spe-3. Strains with these mutations also accumulated putrescine and were presumed to lack spermidine synthase activity, which catalyzes the formation of spermidine from putrescine and decarboxylated S-adenosylmethionine. The three spe loci lay within about 20 map units of one another on the right arm of Linkage Group V in the order: centromere-spe-2-spe-1-spe-3. The requirement for spermidine for growth was much less in spe-2 and spe-3 mutants than in spe-1 mutants, which do not accumulate putrescine. This suggested that putrescine fulfills many, but not all, of the functions of spermidine, or that high levels of putrescine render spermidine more effective in its essential roles.  相似文献   

20.
The levels and synthesis of polyamines were investigated in Physarum polycephalum to obtain information about their regulation during growth and differentiation in a lower eukaryote. Putrescine pools rapidly increased 4–5 fold during the change from dormant spherules to growing plasmodia. The activity of ornithine decarboxylase (EC 4.1.1.17), which converts ornithine to putrescine, reflected this rapid change in the level of putrescine. Spermidine levels were closely correlated with protein concentrations during differentiation due to variations in the activity of S-adenosyl-l-methionine decarboxylase which is involved in the conversion of putrescine to spermidine This enzyme was not stimulated by putrescine, unlike the similar enzyme in other eukaryotes, thereby permitting independent regulation of putrescine and spermidine levels. The high levels of both putrescine and spermidine suggest separate functions for these polyamines in Physarum.The half-lives of ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase were 14 and 21.5 min, respectively. These short half-lives keep the polyamine metabolism under a very tight control as illustrated by the rapid fluctuations in enzyme activity during differentiation and the synchronous mitotic cycle. The step patterns of these unstable enzymes during the mitotic cycle suggest that these enzyme levels are limited by gene dosage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号