首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work (Nicholson, A. W., Hall, C. C., Strycharz, W. A., and Cooperman, B. S. (1982) Biochemistry 21, 3797-3808) showed that [3H]p-azidopuromycin photoaffinity labeled 70 S Escherichia coli ribosomes and that photoincorporation into 50 S subunit proteins was in the order L23 greater than L18/22 greater than L15. In the present work we report on immunoelectron microscopic studies of the complexes formed by p-azidopuromycin-modified 50 S subunits with antibodies to the N6,N6-dimethyladenosine moiety of the antibiotic. The p-azidopuromycin-modified 50 S subunits appear to be identical to unmodified control subunits in electron micrographs. Complexes of modified subunits with antibodies to the N6,N6-dimethyladenosine moiety of p-azidopuromycin were visualized in micrographs. Individual subunits with a single bound antibody (monomeric complexes) and pairs of subunits cross-linked by a single antibody (dimeric complexes) were separately evaluated and showed similar results. Two regions of p-azidopuromycin photoincorporation were identified. The primary site, seen in about 75% of the complexes, is between the central protuberance and small projection, on the side away from the L7/L12 arm, in a region thought to contain the peptidyltransferase center. The secondary site, of unknown significance, is at the base of the subunit maximally distant from the arm. These placements are essentially identical to those we observed in analyses of puromycin photoincorporation (Olson, H. M., Grant, P. G., Cooperman, B. S., and Glitz, D. G. (1982) J. Biol. Chem. 257, 2649-2656) and quantitatively similar to evaluations of monomeric puromycin-50 S subunit complexes. The data support the placement of proteins L23, L18/22, and L15 at or near the peptidyltransferase center at the primary site and suggest, in addition, that the secondary site includes a genuine area of puromycin affinity.  相似文献   

2.
3.
We have examined the structural specificity of the puromycin binding sites on the Escherichia coli ribosome that we have previously identified [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Cooperman, B. S. (1982) Biochemistry 19, 3809-3817, and references cited therein] by examining the interactions of a series of adenine-containing compounds with these sites. We have used as measures of such interactions the inhibition of [3H]puromycin photoincorporation into ribosomal proteins from these sites, the site-specific photoincorporation of the 3H-labeled compounds themselves, and the inhibition of peptidyl transferase activity. For the first two of these measures we have made extensive use of a recently developed high-performance liquid chromatography (HPLC) method for ribosomal protein separation [Kerlavage, A. R., Weitzmann, C., Hasan, T., & Cooperman, B.S. (1983) J. Chromatogr. 266, 225-237]. We find that puromycin aminonucleoside (PANS) contains all of the structural elements necessary for specific binding to the three major puromycin binding sites, those of higher affinity leading to photoincorporation into L23 and S14 and that of lower affinity leading to photoincorporation into S7. Although tight binding to the L23 and S7 sites requires both the N6,N6-dimethyl and 3'-amino groups within PANS, only the N6,N6-dimethyl group and not the 3'-amino group is required for binding to the S14 site. Our current results reinforce our previous conclusion that photoincorporation into L23 takes place from the A' site within the peptidyl transferase center and lead us to speculate that the S14 site might be specific for the binding of modified nucleosides. They also force the conclusion that puromycin photoincorporation proceeds through its adenosyl moiety.  相似文献   

4.
In previous work we have shown that both puromycin [Weitzmann, C. J., & Cooperman, B. S. (1985) Biochemistry 24, 2268-2274] and p-azidopuromycin [Nicholson, A. W., Hall, C. C., Strycharz, W. A., & Coooperman, B. S. (1982) Biochemistry 21, 3809-3817] site specifically photoaffinity label protein L23 to the highest extent of any Escherichia coli ribosomal protein. In this work we demonstrate that L23 that has been photoaffinity labeled within a 70S ribosome by puromycin (puromycin-L23) can be separated from unmodified L23 by reverse-phase high-performance liquid chromatography (RP-HPLC) and further that puromycin-L23 can reconstitute into 50S subunits when added in place of unmodified L23 to a reconstitution mixture containing the other 50S components in unmodified form. We have achieved a maximum incorporation of 0.5 puromycin-L23 per reconstituted 50S subunit. As compared with reconstituted 50S subunits either containing unmodified L23 or lacking L23, reconstituted 50S subunits containing 0.4-0.5 puromycin-L23 retain virtually all (albeit low) peptidyl transferase activity but only 50-60% of mRNA-dependent tRNA binding stimulation activity. We conclude that although L23 is not directly at the peptidyl transferase center, it is sufficiently close that puromycin-L23 can interfere with tRNA binding. This conclusion is consistent with a number of other experiments placing L23 close to the peptidyl transferase center but is difficult to reconcile with immunoelectron microscopy results placing L23 near the base of the 50S subunit on the side facing away from the 30S subunit [Hackl, W., & St?ffler-Meilicke, M. (1988) Eur. J. Biochem. 174, 431-435].  相似文献   

5.
M Gilly  M Pellegrini 《Biochemistry》1985,24(21):5781-5786
[3H]Puromycin covalently incorporates into the protein and to a much lesser extent into the RNA components of Drosophila ribosomes in the presence of 254-nm light. The photoincorporation reaction takes place with a small number of large- (L2 and L17) and small- (S8 and S22) subunit proteins as determined by two-dimensional gel analysis. More quantitative one-dimensional gel results show that puromycin reacts with each of these proteins in a functional site specific manner. The small percentage of the total labeling that occurs with rRNA also appears to be site specific. The rRNA labeling arises from a puromycin-mediated cross-linking of ribosomal protein and rRNA. Ionic conditions shift the pattern of puromycin-labeled ribosomal proteins. These results suggest that puromycin can occupy two distinct sites on Drosophila 80S ribosomes. The pattern of ribosomal proteins labeled by puromycin is affected by the presence of other antibiotics such as emetine, anisomycin, and trichodermin.  相似文献   

6.
In previous work we have shown that puromycin photoaffinity labels two proteins, L23 and S14, from separate sites of high affinity on Escherichia coli ribosomes [Jaynes, E. N., Jr., Grant, P. G., Giangrande, G., Wieder, R., & Cooperman, B. S. (1978) Biochemistry 17, 561-569; Weitzmann, C. J., & Cooperman, B. S. (1985) Biochemistry 24, 2268-2274], that puromycin-modified S14 is separable from native S14 by reverse-phase high-performance liquid chromatography (RP-HPLC), and that ribosomal proteins prepared by RP-HPLC can be reconstituted into active 30S subunits [Kerlavage, A. R., Weitzmann, C. J., & Cooperman, B. S. (1984) J. Chromatogr. 317, 201-212]. In this work we definitively identify puromycin-modified S14 by tryptic fingerprinting, an analysis that also provides evidence that the single tryptophan-containing peptide in S14 is the site of puromycin photoincorporation. We show that reconstituted 30S subunits, in which all of the S14 present is stoichiometrically modified with puromycin and all other ribosomal components are present in unmodified form, lack Phe-tRNAPhe binding activity and further that 70S ribosomes containing such reconstituted 30S subunits have substantially diminished binding activity to both the A and P sites, as differentiated through use of tetracycline. Suitable control experiments strongly indicate that this loss of activity is a direct consequence of puromycin photoincorporation.  相似文献   

7.
The effect of ribosomal antibiotics on the photoinduced affinity labeling of Escherichia coli ribosomes by puromycin [Cooperman, B.S., Jaynes, E.N., Brunswick, D.J., & Luddy, M.A. (1975) Proc. Natl. Acad. Sci. U.S.A. 72, 1974; Jaynes, E.N. Jr., Grant, P.G., Giangrande, G., Wieder, R., & Cooperman, B.S. (1978) Biochemistry 17, 561] has been studied. Although blasticidin S, sparsomycin, lincomycin, and erythromycin are essentially without effect, major changes are seen on addition of either chloramphenicol or tetracycline. The products of photoincorporation have been characterized by one- and two-dimensional gel electrophoresis and by specific immunoprecipitation with antibodies to ribosomal proteins. In the presence of chloramphenicol, protein S14 becomes the major labeled protein. In the presence of tetracycline, L23 remains the major labeled protein, but the yield of labeled ribosomes is enormously increased, and the labeling is more specific for L23. These results are discussed in terms of the known modes of action of these antibiotics and the photoreactivity of tetracycline.  相似文献   

8.
Studies on the catalytic rate constant of ribosomal peptidyltransferase   总被引:3,自引:0,他引:3  
A detailed kinetic analysis of a model reaction for the ribosomal peptidyltransferase is described, using fMet-tRNA or Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The initiation complex (fMet-tRNA X AUG X 70 S ribosome) or (Ac-Phe-tRNA X poly(U) X 70 S ribosome) (complex C) is isolated and then reacted with excess puromycin (S) to give fMet-puromycin or Ac-Phe-puromycin. This reaction (puromycin reaction) is first order at all concentrations of S tested. An important asset of this kinetic analysis is the fact that the relationship between the first order rate constant kobs and [S] shows hyperbolic saturation and that the value of kobs at saturating [S] is a measure of the catalytic rate constant (k cat) of peptidyltransferase in the puromycin reaction. With fMet-tRNA as the donor, this kcat of peptidyltransferase is 8.3 min-1 when the 0.5 M NH4Cl ribosomal wash is present, compared to 3.8 min-1 in its absence. The kcat of peptidyltransferase is 2.0 min-1 when Ac-Phe-tRNA replaces fMet-tRNA in the presence of the ribosomal wash and decreases to 0.8 min-1 in its absence. This kinetic procedure is the best method available for evaluating changes in the activity of peptidyltransferase in vitro. The results suggest that peptidyltransferase is subjected to activation by the binding of fMet-tRNA to the 70 S initiation complex.  相似文献   

9.
Photoactivation of the [3H]dihydrorosaramicin chromophore at a wavelength above 300 nm allows the covalent attachment of the macrolide antibiotic to the bacterial ribosome. Bidimensional electrophoresis shows that the radioactivity is mainly associated with proteins L1, L5, L6, L15, L18, L19, S1, S3, S4, S5 and S9. When photoincorporation of the drug is conducted in the presence of puromycin as effector of [3H]dihydrorosaramicin-binding sites, a decrease in the labeling of most proteins is observed, except for L18 and L19, which are radiolabeled to a larger extent. These results allow us to speculate that L18 and L19 belong to the high-affinity binding site of rosaramicin antibiotic.  相似文献   

10.
We have measured the binding isotherms of C--A--C--C--A(3'NH)-[14C]Phe to the 70S ribosomes and 50S subunits of Escherichia coli and proposed a theoretical model for adsorption when cooperative interaction occurs between ligands that are adsorbed on ribosomes. Analysis of the experimental binding isotherms leads to the following conclusions. A ribosome (or subunit) binds two C--A--C--C--A(3'NH)-Phe molecules. The binding of C--A--C--C--A(3'NH)-Phe to a ribosome (or subunit) is a cooperative process, characterized by a cooperativity coefficient tau = 40 +/- 5 or more. The binding of C--A--C--C--A(3'NH)-AcPhe at the donor site of the peptidyltransferase center (association binding constant 1.5 X 10(6) M-1) and the binding of puromycin at the acceptor site also occur cooperatively with a coefficient of 10-25, the association binding constant of puromycin at the acceptor site being (1-2) X 10(4) M-1. The puromycin association binding constant at the donor site multiplied by the cooperativity coefficient of two interacting puromycin molecules absorbed on a ribosome equals 100-200 M-1.  相似文献   

11.
N-(2-Nitro-4-azidobenzoyl)-[3H]puromycin (NAB-puromycin) was synthesized as a photoreactive derivative of puromycin in order to detect ribosomal proteins located near the peptidyltransferase centre of rat liver ribosomes. Irradiation of ribosome-NAB-puromycin complexes leads to covalent attachment of the affinity label to proteins of the large ribosomal subunit, in particular to proteins L28/29, and, to a somewhat lower extent, to proteins L4, L6, L10 and L24. The results are discussed in the light of earlier studies performed with other affinity labels that attacked the peptidyltransferase region of rat liver ribosomes.  相似文献   

12.
The major function of the ribosome is its ability to catalyze formation of peptide bonds, and it is carried out by the ribosomal peptidyltransferase. Recent evidence suggests that the catalyst of peptide bond formation is the 23S rRNA of the large ribosomal subunit. We have developed an in vitro system for the determination of peptidyltransferase activity in yeast ribosomes. Using this system, a kinetic analysis of a model reaction for peptidyltransferase is described with Ac-Phe-tRNA as the peptidyl donor and puromycin as the acceptor. The Ac-Phe-tRNA-poly(U)-80S ribosome complex (complex C) was isolated and then reacted with excess puromycin to give Ac-Phe-puromycin. This reaction (puromycin reaction) followed first-order kinetics. At saturating concentrations of puromycin, the first-order rate constant (k(3)) is identical to the catalytic rate constant (k(cat)) of peptidyltransferase. This k(cat) from wild-type yeast strains was equal to 2.18 min(-1) at 30 degrees C. We now present for the first time kinetic evidence that yeast ribosomes lacking a particular protein of the 60S subunit may possess significantly altered peptide bond-forming ability. The k(cat) of peptidyltransferase from mutants lacking ribosomal protein L24 was decreased 3-fold to 0.69 min(-1), whereas the k(cat) from mutants lacking L39 was slightly increased to 3.05 min(-1) and that from mutants lacking both proteins was 1.07 min(-1). These results suggest that the presence of ribosomal proteins L24 and, to a lesser extent, L39 is required for exhibition of the normal catalytic activity of the ribosome. Finally, the L24 or L39 mutants did not affect the rate or the extent of the translocation phase of protein synthesis. However, the absence of L24 caused increased resistance to cycloheximide, a translocation inhibitor. Translocation of Ac-Phe-tRNA from the A- to P-site was inhibited by 50% at 1.4 microM cycloheximide for the L24 mutant compared to 0.7 microM for the wild type.  相似文献   

13.
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action.  相似文献   

14.
The photoincorporation of puromycin into Escherichia coli ribosomes has been studied in detail. Incorporation into protein L23 as a function of puromycin concentration follows a simple saturation curve and is specifically blocked by structural and functional analogues of puromycin, thus demonstrating that such incorporation proceeds via an affinity labeling process. Incorporation into L23 becomes more specific as the light fluence is reduced, indicating that such incorporation takes place from a native rather than light-denatured puromycin site. L23 remains the major labeled protein using ribosomes prepared by several procedures, suggesting the conservative nature of the site. In addition evidence is presented for affinity labeling of S14 and of a site in the RNA fraction of the 50S particle. Specific incorporation appears to proceed with an anomalously high quantum yield. The detailed photochemical mechanism is not understood, although 8-alkylation of purine moiety has been excluded. Incorporation is largely inhibited in the presence of thiol reagents.  相似文献   

15.
Photoaffinity labeling of 70S ribosomes from B. stearothermophilus by [3H]-1-(4-azidophenyl)-2-(5′-guanyl) pyrophosphate (APh-GDP) in the presence of fusidate and elongation factor G (EF-G) results in incorporation of tritium in the 50S proteins BL2, BL10 and BL22. Irradiation of the corresponding 5S RNA-protein complex in the presence of the GDP derivative gives only incorporation of tritium in BL10 and BL22. The proteins BL10 and BL22 comigrate in two dimensional gel electrophoresis with the 50S ribosomal proteins EL11 and EL18 from E. coli. The result suggests that the region at or near the guanine nucleotide binding site of the ribosome and the complex are the same. Since previous work has shown that the latter two are labeled upon irradiation of the ribosome with [3H]-APh-GDP, it is concluded that ribosomes from E. coli and B. stearothermophilus have structurally related GTPase sites.  相似文献   

16.
Escherichia coli strain 15-28 is a mutant with a defect in ribosome synthesis that caused the accumulation of ribonucleoprotein ('47S') particles during exponential growth. These particles are precursors to 50S ribosomes that lack three ribosomal proteins. Peptidyltransferase activity and binding at the peptidyl site of the peptidyltransferase centre are greatly decreased in 47S particles. Both these activities are lower in the 50S and 70S ribosomes of strain 15-28 than in its parent. Unusual assembly of the larger ribosomal subunit in strain 15-28 may produce completed ribosomes with diminished biological activity.  相似文献   

17.
A photoreactive puromycin analogue, 6-dimethylamino-9-[3-(p-azido-L-beta-phenylalanylamino)-3-deoxy-beta-ribofuranosyl] purine, was synthesized. Biological activity was demonstrated by inhibition of the poly (U)-directed phenylalanine-incorporation system and by decomposition of isolated polysomes from Escherichia coli. The 3H-labeled puromycin analogue was covalently attached to the 50-S subunit of isolated 70-S ribosomes from Escherichia coli after irradiation. More than 90% of the radioactivity was bound to the protein fraction. The 70-S proteins were separated by two-dimensional gel electrophoresis. The proteins labeled primarily were those of the 50-S subunit, identified as L6, L13, L18, L22 and L25. On the basis of the affinity label used and supportive data from the literature, it is concluded that these proteins are at the active center of the 50-S particle and probably belong to the region of the ribosomal A site.  相似文献   

18.
M Gilly  N R Benson  M Pellegrini 《Biochemistry》1985,24(21):5787-5792
Trichodermin, a eukaryotic-specific antibiotic, inhibits protein synthesis in Drosophila cells. We have synthesized a 14C-labeled bromoacetyl derivative of trichodermin that binds to Drosophila 80S ribosomes and once bound reacts covalently with ribosomal proteins. It does not react with rRNA. Three large-subunit proteins (L1, L3, and L24) and three small-subunit proteins (S3/S5, 2/3S, and S8) are labeled by [14C] (bromoacetyl)trichodermin. Reaction with each of these proteins can be competed by an excess of unmodified trichodermin, indicating that the labeling has occurred from the native binding site of the parent drug. One of the (bromoacetyl)trichodermin-labeled proteins (S8) is also labeled by photoactivated puromycin in the A site. A second protein (S3/S5) is found to be labeled by a P-site affinity reagent. The results suggest that the trichodermin binding site spans both the small and large subunits and portions of both the A and P sites. These data combined with previous studies on the A and P sites of Drosophila ribosomes have allowed us to construct a model of the protein locations in this important active site.  相似文献   

19.
Affinity labeling of the virginiamycin S binding site on bacterial ribosome   总被引:1,自引:0,他引:1  
Virginiamycin S (VS, a type B synergimycin) inhibits peptide bond synthesis in vitro and in vivo. The attachment of virginiamycin S to the large ribosomal subunit (50S) is competitively inhibited by erythromycin (Ery, a macrolide) and enhanced by virginiamycin M (VM, a type A synergimycin). We have previously shown, by fluorescence energy transfer measurements, that virginiamycin S binds at the base of the central protuberance of 50S, the putative location of peptidyltransferase domain [Di Giambattista et al. (1986) Biochemistry 25, 3540-3547]. In the present work, the ribosomal protein components at the virginiamycin S binding site were affinity labeled by the N-hydroxysuccinimide ester derivative (HSE) of this antibiotic. Evidence has been provided for (a) the association constant of HSE-ribosome complex formation being similar to that of native virginiamycin S, (b) HSE binding to ribosomes being antagonized by erythromycin and enhanced by virginiamycin M, and (c) a specific linkage of HSE with a single region of 50S, with virtually no fixation to 30S. After dissociation of covalent ribosome-HSE complexes, the resulting ribosomal proteins have been fractionated by electrophoresis and blotted to nitrocellulose, and the HSE-binding proteins have been detected by an immunoenzymometric procedure. More than 80% of label was present within a double spot corresponding to proteins L18 and L22, whose Rfs were modified by the affinity-labeling reagent. It is concluded that these proteins are components of the peptidyltransferase domain of bacterial ribosomes, for which a topographical model, including the available literature data, is proposed.  相似文献   

20.
C C Hall  J E Smith  B S Cooperman 《Biochemistry》1985,24(21):5702-5711
We have developed a method for the rapid localization of sites of ribosomal RNA labeling to limited regions (approximately 200 bases). The method is based on the formation and polyacrylamide gel electrophoretic separation of hybrids between restriction fragments of rrnB DNA and isotopically labeled rRNA and the subsequent determination of radioactivity across the gel. Using [3H]adenine-labeled rRNA as a control sample, we optimized experimental conditions with respect to a number of variables, including rRNA:DNA stoichiometric ratio, temperature of the annealing step, and levels of nucleases. An important result is that different rRNA X DNA hybrid fragments are obtained in different yields. The method was then applied to analyses of C3H3-labeled rRNA, giving results in good accord with known and proposed sites of rRNA methylation, and of rRNA that has been photoaffinity-labeled with 5-azido-2-nitrobenzoyl-[3H]Phe-tRNAPhe, a probe directed toward the peptidyltransferase center. The latter study showed a single major site of RNA labeling, falling within bases 2445-2668 of 23S rRNA. The extent of labeling was shown to be dependent on light-induced formation of a reactive intermediate and to be decreased in the absence of poly(uridylic acid) or in the presence of puromycin. The location of this major site of labeling is consistent with recent results obtained with an analogous tRNA photoaffinity label [Barta, A., Steiner, G., Brosius, J., Noller, H. F., & Kuechler, E. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3607-3611] and with related genetic and biochemical studies of antibiotic interaction with ribosomes suggesting that the peptidyltransferase center falls within region V (bases 2043-2625) of 23S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号