首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
J. Zhang  J. Li  C. Wu  Z. Hu  L. An  Y. Wan  C. Fang  X. Zhang  J. Li  Y. Wang 《Animal genetics》2020,51(5):694-706
In humans and mice, melanocortin receptor 4 (MC4R) and melanocortin receptor accessory protein 2 (MRAP2) can form a complex and control energy balance, thus regulating body weight and obesity. In pigs, a missense variant (p.Asp298Asn) of MC4R has been suggested to be associated with growth and fatness; however, the effect of Asp298Asn substitution on MC4R function is controversial, limiting its application in animal breeding. Here we examined the effect of this polymorphism on MC4R constitutive activity, cell surface expression and signaling, and its interaction with MRAP2 in pigs. We found that: (i) both pig MC4RAsp and MC4RAsn can be activated by its ligands (α-MSH and ACTH) and stimulate cAMP/PKA signaling pathway, as detected by pGL3–CRE–luciferase reporter assay, indicating that, like pMC4RAsp, pMC4RAsn is coupled to the cAMP/PKA signaling pathway; (ii) compared with pMC4RAsp, pMC4RAsn loses the basal constitutive activity and shows a decreased surface expression, as detected by dual-luciferase reporter assay and Nano-HiBiT system; (iii) as in other vertebrates, both pMC4RAsp and pMC4RAsn can interact with pMRAP2, thus decreasing receptor surface expression and enhancing ligand sensitivity, although, in contrast to pMC4RAsp, the basal constitutive activity of pMC4RAsn cannot be affected by pMRAP2; and (iv) RNA-seq data analysis revealed a co-expression of MC4R and MRAP2 in pig hypothalamus. Taken together, our data provide convincing evidence that Asp298Asn substitution decreases the constitutive activity and cell surface expression of MC4R or MC4R–MRAP2 complex, which may affect energy balance and be a valuable selection marker for breeding programs in pigs.  相似文献   

3.
In this study we resequenced 1729 bp of the rabbit melanocortin 4 receptor (MC4 R) gene in 31 rabbits from different breeds/lines and identified ten polymorphisms: one was an indel and 9 were single nucleotide polymorphisms (SNPs). The indel and 5 SNPs were in the 5′-flanking region, 3 were synonymous SNPs and one was a missense mutation (c.101G>A; p.G34D), located in a conserved position of the extracellular tail of the MC4 R protein. The missense mutation was analyzed in a panel of 74 rabbits of different breeds and in 516 performance tested rabbits of a commercial paternal line under selection for growth efficiency. Association analysis indicated that rabbits with the less frequent genotype in this population (DD) had a lighter weight at 70 postnatal days than animals with genotype GD (P < 0.10) and animals with genotype GG (P < 0.05). This is the third study on candidate genes, after those on GH1 and IGF2 that reported a marker associated with finishing weight. Therefore, it seems that a candidate gene approach in rabbit based on previous information accumulated in other livestock species could be useful to identify genes explaining a fraction of variability of performance traits with potential application on rabbit breeding and selection.  相似文献   

4.
5.
The melanocortin-4 receptor (MC4R), a G-protein coupled receptor, is implicated in mediating the effect of leptin on food intake and energy balance. A previous candidate gene study reported an association between an MC4R missense mutation (Asp298Asn) and fatness, growth and feed intake in pigs. To assess this association further, we analysed the segregation of this missense mutation in relation to variation in fatness traits using a Wild Boar x Large White intercross. The Wild Boar and Large White founders were homozygous for different MC4R alleles. The MC4R was assigned to the expected region on pig chromosome 1. The statistical evaluation did not reveal any indication of a significant effect on fatness related traits in this pedigree.  相似文献   

6.
The melanocortin receptor gene family consists of five single-exon members, which are located on autosomes. Three genes (MC2R, MC4R and MC5R) are syntenic in the human, mouse, cattle and dog genomes, while in the pig, the syntenic group comprises MC1R, MC2R and MC5R. Two genes (MC1R and MC4R) have been extensively studied due to their function in melanogenesis (MC1R) and energy control (MC4R). Conservative organisation of these genes in five mammalian species (human, mouse, cattle, pig and dog), in terms of the encoded amino acid sequence, is higher in the case of MC4R compared to MC1R. Polymorphisms of these two genes are responsible or associated with variation of pigmentation (MC1R) and adipose tissue deposition (MC4R). Polymorphic variants in MC1R, causing coat colour variation, were described in humans and domestic mammals (cattle, horse, pig, sheep, dog), as well as farm red and arctic foxes. The MC4R gene is very polymorphic in humans and it is well known that some variants cause monogenic obesity or significantly contribute to the development of polygenic obesity. Such relationships are not so evident in domestic mammals; however, at least one missense substitution (298Asp?>?Asn) in the porcine MC4R significantly contributes, at least in some breeds, to fat tissue accumulation, feed conversion ratio and daily weight gain. Knowledge on the phenotypic effects of polymorphisms of MC2R, MC3R and MC5R in domestic mammals is scarce, probably due to the small number of reports addressing these genes. Thus, further studies focused on these genes should be undertaken.  相似文献   

7.
The melanocyte-stimulating hormone receptor gene (MC1R) is the major candidate gene for the chestnut coat color in horses since it is assumed to be controlled by an allele at the extension locus. MC1R sequences were PCR amplified from chestnut (e/e) and non-chestnut (E/−) horses. A single-strand conformation polymorphism was found that showed a complete association to the chestnut coat color among 144 horses representing 12 breeds. Sequence analysis revealed a single missense mutation (83Ser → Phe) in the MC1R allele associated with the chestnut color. The substitution occurs in the second transmembrane region, which apparently plays a key role in the molecule since substitutions associated with coat color variants in mice and cattle as well as red hair and fair skin in humans are found in this part of the molecule. We propose that the now reported mutation is likely to be the causative mutation for the chestnut coat color. The polymorphism can be detected with a simple PCR-RFLP test, since the mutation creates a TaqI restriction site in the chestnut allele. Received: 20 May 1996 / Accepted: 31 July 1996  相似文献   

8.
9.
Obesity is a complex disease caused by both genetics and environmental factors. Melanocortin-4 receptor (MC4R) (MIM 155541) gene polymorphisms were reported to be the cause of monogenic obesity in humans. We studied three polymorphisms (Val50Met, Val103Ile, and Ser58Cys) and a mutation (Asn274Ser) of the MC4R gene in 203 obese patients and in 110 healthy subjects in the Turkish population. A high incidence of Val103Ile and Val50Met polymorphisms as well as the Asn274Ser mutation was found in the obese patients, whereas no significant correlation was found regarding the Ser58Cys polymorphism. We conclude that there is a concordance between the polymorphisms (Val103Ile, Val50Met, Ser58Cys) that were first studied in the Turkish population with obesity.  相似文献   

10.
The melanocortin 4 receptor (MC4R) is routinely investigated for the role it plays in human obesity, as mutations in MC4R are the most common dominantly inherited form of the disease. As little is known about the evolutionary history of this locus, we investigated patterns of variation at MC4R in a worldwide sample of 1,015 humans from 51 populations, and in 8 central chimpanzees. There is a significant paucity of diversity at MC4R in humans, but not in chimpanzees. The spectrum of mutations in humans, combined with the overall low level of diversity, suggests that most (if not all) of the observed non-synonymous polymorphisms are likely to be transient deleterious mutations. The MC4R coding region was resequenced in 12 primate species and sequences from an additional 29 vertebrates were included in molecular evolutionary analyses. MC4R is highly conserved throughout vertebrate evolution, and has apparently been subject to high levels of continuous purifying selection that increased approximately threefold during primate evolution. Furthermore, the strong selection extends to codon usage bias, where most silent mutations are expected to be either quickly fixed or removed from the population, which may help explain the unusually low levels of silent polymorphisms in humans. Finally, there is a significant tendency for non-synonymous mutations that impact MC4R function to occur preferentially at sites that are identified by evolutionary analyses as being subject to very strong purifying selection. The information from this study should help inform future epidemiological investigations of MC4R. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.

Objective:

Common variation at the loci harboring fat mass and obesity (FTO), melanocortin receptor 4 (MC4R), and transmembrane protein 18 (TMEM18) is consistently reported as being statistically most strongly associated with obesity. Investigations if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children were conducted.

Design and Methods:

The exons of FTO, MC4R, and TMEM18 in an initial subset of our cohort were sequenced, that is, 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity.

Results:

A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non‐synonymous (A163T, G182A, M400V, and A405V), thirteen in MC4R, of which six were non‐synonymous (V103I, N123S, S136A, F202L, N240S, and I251L), and four in TMEM18, of which two were non‐synonymous (P2S and V113L). Follow‐up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R (Fisher's exact P = 0.0001).

Conclusion:

In summary, moderately rare missense variants within the FTO, MC4R, and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss‐of‐function variant in MC4R.  相似文献   

12.
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor critically involved in regulating energy balance. MC4R activation results in decreased food intake and increased energy expenditure. Genetic and pharmacological studies demonstrated that the MC4R regulation of energy balance is conserved from fish to mammals. In humans, more than 150 naturally occurring mutations in the MC4R gene have been identified. Functional study of mutant MC4Rs is an important component in proving the causal link between MC4R mutation and obesity as well as the basis of personalized medicine. In this article, we studied 20 MC4R mutations that were either not characterized or not fully characterized. We showed that 11 mutants had decreased or absent cell surface expression. D126Y was defective in ligand binding. Three mutants were constitutively active but had decreased cell surface expression. Eleven mutants had decreased basal signaling, with two mutants defective only in this parameter, suggesting that impaired basal signaling might also be a cause of obesity. Five mutants had normal functions. In summary, we provided detailed functional data for further studies on identifying therapeutic approaches for personalized medicine to treat patients harboring these mutations.  相似文献   

13.
Single nucleotide polymorphism (SNP) near certain genes revealed association of FAT (fat mass and obesity-associated gene), MC4R (melanocortin 4 receptor gene), and other genes with obesity. However, involvement of the FAT expression products in the regulation of energy balance remains to be clarified. The function of MC4R encoding melanocortin 4 receptor (MC4R) is somewhat better understood. α-, β-, and γ- MSH encoded by the POMC gene bind to MC4R, reduce food intake, and slow down fat accumulation. Expression of POMC encoding MSH is enhanced by leptin binding to its receptor (LepRb) in hypothalamic neurons. Mutations in human and animal MC4R, POMC, and LEP genes are associated with obesity. More than 60 mutations in MC4R, more than 20 mutations in POMC and fewer LEP mutations have been reported. Nonsense mutations and reading frame shifts block gene expression and thereby disrupt protein synthesis. Missense mutations frequently affect protein folding in endoplasmic reticulum; unfolded or misfolded proteins remain in the cytoplasm and undergo degradation. Certain missence mutations do not interfere with gene expression and folding of proteins but impair their functioning at the periphery. p.S127L mutation in MC4R, p.E206X and p.F144L mutations in POMC as well as other mutations in homozygous and heterozygous forms account for impaired energy balance in humans. The following mutations have been identified in the LEP gene: G133fsX15, p.R105X, p.R105W, and p.S141C mutations. In homozygous form they are associated with obesity and other pathological conditions.  相似文献   

14.
The seven donkey breeds recognised by the French studbook are characterised by few coat colours: black, bay and grey. Normand bay donkeys seldom give birth to red foals, a colour more commonly seen and recognised in American miniature donkeys. Red resembles the equine chestnut colour, previously attributed to a mutation in the melanocortin 1 receptor gene (MC1R). We used a panel of 124 donkeys to identify a recessive missense c.629T>C variant in MC1R that showed a perfect association with the red coat colour. This variant leads to a methionine to threonine substitution at position 210 in the protein. We showed that methionine 210 is highly conserved among vertebrate melanocortin receptors. Previous in silico and in vitro analyses predicted this residue to lie within a functional site. Our in vivo results emphasised the pivotal role played by this residue, the alteration of which yielded a phenotype fully compatible with a loss of function of MC1R. We thus propose to name the c.629T>C allele in donkeys the e allele, which further enlarges the panel of recessive MC1R loss‐of‐function alleles described in animals and humans.  相似文献   

15.
Genetics of fat tissue accumulation in pigs: a comparative approach   总被引:2,自引:0,他引:2  
Fatness traits are important in pig production since they influence meat quality and fattening efficiency. On the other hand, excessive fat accumulation in humans has become a serious health problem due to worldwide spread of obesity. Since the pig is also considered as an animal model for numerous human diseases, including obesity and metabolic syndrome, comparative genomic studies may bring new insights into genetics of fatness/obesity. Input of genetic factors into phenotypic variability of these traits is rather high and the heritability coefficient (h 2) of these traits oscillates around 0.5. Genome scanning revealed the presence of more than 500 QTLs for fatness in the pig genome. In addition to QTL studies, many candidate gene polymorphisms have been analyzed in terms of their associations with pig fatness, including genes encoding leptin (LEP) and its receptor (LEPR), insulin-like growth factor 2 (IGF-2), fatty acid-binding proteins (FABP3 andFABP4), melanocortin receptor type 4 (MC4R), and theFTO (fat mass and obesity-associated) gene. Among them, a confirmed effect on pig fatness was found for a well-known polymorphism of theIGF-2 gene. In humans the strongest association with predisposition to obesity was shown for polymorphism of theFTO gene, while in pigs such an association seems to be doubtful. The development of functional genomics has revealed a large number of genes whose expression is associated with fat accumulation and lipid metabolism, so far not studied extensively in terms of the association of their polymorphism with pig fatness. Recently, epigenomic mechanisms, mainly RNA interference, have been considered as a potential source of information on genetic input into the fat accumulation process. The rather limited progress in studies focused on the identification of gene polymorphism related with fatness traits shows that their genetic background is highly complex.  相似文献   

16.
The melanocortin receptors (MCRs) are members of the G protein-coupled receptor (GPCR) 1 superfamily with seven transmembrane (TM) domains. Among them, the melanocortin-4 receptor (MC4R) subtype has been highlighted recently by genetic studies in obese humans. In particular, in a patient with severe early-onset obesity, a novel heterozygous mutation in the MC4R gene was found in an exchange of Asp to Asn in the 90th amino acid residue located in the TM 2 domain (MC4RD90N). Mutations in the MC4R gene are the most frequent monogenic causes of severe obesity and are described as heterozygous with loss of function. We determine solution structures of the TM 2 domain of MC4R (MC4RTM2) and compared secondary structure of Asp90 mutant (MC4RTM2-D90N) in a micelle environment by nuclear magnetic resonance (NMR) spectroscopy. NMR structure shows that MC4RTM2 forms a long α-helix with a kink at Gly98. Interestingly, the structure of MC4RTM2-D90N is similar to that of MC4RTM2 based on data from CD and NMR spectrum. However, the thermal stability and homogeneity of MC4RD90N is quite different from those of MC4R. The structure from molecular modeling suggests that Asp902.50 plays a key role in allosteric sodium ion binding. Our data suggest that the sodium ion interaction of Asp902.50 in the allosteric pocket of MC4R is essential to its function, explaining the loss of function of the MC4RD90N mutant.  相似文献   

17.
The polymorphisms of LEPR and MC4R genes are involved in appetite control mechanisms and indirectly associated with level of fat content in pig carcasses. Therefore, the aim of our study was to determine if both polymorphisms have an effect on components of colostrum and milk of sows. In our study we used gilts of two Polish breeds: Polish Landrace and Polish Large White, which belong to dam-line in Polish breeding. Colostrum and milk of sows were collected in 7, 14 and 21 day of lactation to assay solids, total protein, fat and lactose. The obtained results showed, that the observed mutation (G/A 1426 MC4R) had a significant effect mainly on the fat and solids content of colostrum. Animals with the MC4R AA genotype had 2.13 and 1.91 % (P ≤ 0.01) lower fat content of colostrum compared to sows with the MC4R GG genotype and heterozygous MC4R AG. The presence of the MC4R A allele in the animals’ genotype contributed to a decrease in fat and solids content of colostrum. The LEPR/HpaII mutation was found to have a considerable effect on the level of most colostrum components (fat, protein and solids) in both pig breeds. Significant decrease in the value of the colostrum components (except lactose) was observed only for animals with the allele LEPR B. The results obtained suggest that these genes might be used in selection of dam-line pigs as genetic markers of milk quality.  相似文献   

18.
Melanocortin 4 receptor (MC4R), which is associated with inherited human obesity, is involoved in food intake and body weight of mammals. To study the relationships between MC4R gene polymorphism and body weight in Beagle dogs, we detected and compared the nucleotide sequence of the whole coding region and 3′- and 5′- flanking regions of the dog MC4R gene (1214 bp). In 120 Beagle dogs, two SNPs (A420C, C895T) were identified and their relation with body weight was analyzed with RFLP-PCR method. The results showed that the SNP at A420C was significantly associated with canine body weight trait when it changed amino acid 101 of the MC4R protein from asparagine to threonine,while canine body weight variations were significant in female dogs when MC4R nonsense mutation at C895T. It suggested that the two SNPs might affect the MC4R gene’s function which was relative to body weight in Beagle dogs. Therefore, MC4R was a candidate gene for selecting different size dogs with the MC4R SNPs (A420C, C895T) being potentially valuable as a genetic marker.  相似文献   

19.
The melanocortin 1 receptor (MC1R) gene was investigated as a candidate for plumage variations in Chinese painted quail, Coturnix chinensis. Four silent and two missense nucleotide polymorphisms were identified. The correspondent amino acid changes, p.Glu92Lys and p.Pro292Leu, were found in Blue Face and Red Breasted animals respectively. Blue Face is a melanic phenotype similar to the co‐dominant Extended Brown of Japanese quail, and both share the p.Glu92Lys mutation. The association of p.Pro292Leu with the recessive Red Breasted was confirmed in 23 animals from an experimental F2 cross.  相似文献   

20.
The melanocortin 1 receptor (MC1R), mast/stem cell growth factor receptor (KIT), and platelet-derived growth factor receptor α (PDGFRA) are loci that all belong to equine linkage group 2 (LG2). Of these, KIT was fluorescent in situ hybridization (FISH) mapped to ECA3q21 with equine cDNA and heterologous porcine BAC probes, while MC1R was localized to ECA3p12 and PDGFRA to ECA3q21 with heterologous porcine BAC probes. A three-step comparison between ECA3 and donkey chromosomes was carried out. First, microdissected ECA3 painting probe was used on donkey chromosomes, which showed disruption of the equine synteny. Next, human (HSA) Chromosomes (Chrs) 16q and 4 specific paints, known to be homologous to ECA3p and 3q, respectively, were applied to detect homologous chromosomal segment(s) in donkey. Finally, four genes (MC1R, ALB, PDGFRA, KIT) and two equine microsatellite markers (SGCV18 and SGCV33) located on ECA3 were FISH mapped to donkey chromosomes. The findings refined the cross species painting homology results and added six new markers to the nascent donkey gene map. The hypothesis that Tobiano coat color in horses may be associated with a chromosomal inversion involving genes within LG2 was tested by G-banding-based cytogenetic analysis and ordering of four loci—KIT, PDGFRA, albumin (ALB), and MC1R—in Tobiano and non-tobiano (homozygous as well as heterozygous) horses. However, no difference either in banding patterns or location/relative order of the genes was observed in the three classes. The study highlights successful FISH mapping of BAC probes across evolutionarily diverged species, viz., pig and horse/donkey, and represents the first use of large-sized individual clones across distantly related farm animals. Received: 2 September 1998 / Accepted: 20 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号