首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient DNA strand breaks are generated in the whole population of elongating spermatids and are perfectly coincident with histone H4 hyperacetylation at chromatin-remodeling steps. Given the limited DNA repair capacity of elongating spermatids, chromatin remodeling may present a threat to genetic integrity of the male gamete. The nature of the DNA strand breakage, the enzymes involved, and the role of H4 hyperacetylation in the process must be determined to further investigate the potential mutagenic consequences of this important transition. We used the metachromatic dye acridine orange in combination with fluorescence-activated cell sorting to achieve separation of spermatids according to their condensation state. Using single-cell electrophoresis (comet assay), in both alkaline and neutral conditions, we demonstrated that double-stranded breaks account for most of the DNA fragmentation observed in purified elongating spermatids. DNA strand breaks were generated in round spermatids as a result of de novo histone hyperacetylation induced by trichostatin A, whereas an increase in endogenous DNA strand breaks was observed in elongating spermatids. Using a short-term culture of testicular cells, we demonstrated that DNA strand breaks in spermatids were abolished on incubation with two functionally different topoisomerase II inhibitors. Hence, topoisomerase II appears as the unique enzyme responsible for the transient double-stranded breaks in elongating spermatids but depends on histone hyperacetylation for its activity.  相似文献   

2.
To achieve the specialized nuclear structure in sperm necessary for fertilization, dramatic chromatin reorganization steps in developing spermatids are required where histones are largely replaced first by transition proteins and then by protamines. This entails the transient formation of DNA strand breaks to allow for, first, DNA relaxation and then chromatin compaction. However, the nature and origin of these breaks are not well understood. We previously reported that these DNA strand breaks trigger the activation of poly(ADP-ribose) (PAR) polymerases PARP1 and PARP2 and that interference with PARP activation causes poor chromatin integrity with abnormal retention of histones in mature sperm and impaired embryonic survival. Here we show that the activity of topoisomerase II beta (TOP2B), an enzyme involved in DNA strand break formation in elongating spermatids, is strongly inhibited by the activity of PARP1 and PARP2 in vitro, and this is in turn counteracted by the PAR-degrading activity of PAR glycohydrolase. Moreover, genetic and pharmacological PARP inhibition both lead to increased TOP2B activity in murine spermatids in vivo as measured by covalent binding of TOP2B to the DNA. In summary, the available data suggest a functional relationship between the DNA strand break-generating activity of TOP2B and the DNA strand break-dependent activation of PARP enzymes that in turn inhibit TOP2B. Because PARP activity also facilitates histone H1 linker removal and local chromatin decondensation, cycles of PAR formation and degradation may be necessary to coordinate TOP2B-dependent DNA relaxation with histone-to-protamine exchange necessary for spermatid chromatin remodeling.  相似文献   

3.
In the course of mammalian spermiogenesis, a unique chromatin remodeling process takes place within elongating and condensing spermatid nuclei. The histone-to-protamine exchange results in efficient packaging and increased stability of the paternal genome. Although not fully understood, this change in chromatin architecture must require a global but transient appearance of endogenous DNA strand breaks because most of the DNA supercoiling is eliminated in the mature sperm. To establish the extent of DNA strand breakage and the stage specificity at which these breaks are created and repaired, we performed a sensitive terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) assay to detect in situ DNA strand breaks on both mice and human testis cross sections. In the mouse, we established that DNA strand breaks are indeed detected in the whole population of elongating spermatids between stages IX and XI of the seminiferous epithelium cycle perfectly coincident with the chromatin remodeling as revealed by histone H4 hyperacetylation. Similarly, TUNEL analyses performed on human testis sections revealed an elevated and global increase in the levels of DNA strand breaks present in nuclei of round-shaped spermatids also coincident with chromatin remodeling. The demonstration of the global character of the transient DNA strand breaks in mammalian spermiogenesis suggests that deleterious consequences on genetic integrity of the male gamete may arise from any disturbance in the process. In addition, this investigation may shed some light on the origin of the low success rate that has been encountered so far with intracytoplasmic injection procedures making use of round spermatids in humans.  相似文献   

4.
5.
6.
The emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes. A novel method, extension ligation-mediated polymerase chain reaction (ELMPCR), was used here for mapping topoisomerase-mediated DNA strand breaks and apoptotic DNA cleavage across a translocation-prone region of MLL in human cells. We report the first genomic map integrating translocation breakpoints and topoisomerase I, TOP2, and apoptotic DNA cleavage sites at nucleotide resolution across an MLL region harboring a t-AML translocation hotspot. This hotspot is flanked by a TOP2 cleavage site and is localized at one extremity of a minor apoptotic cleavage region, where multiple single- and double-strand breaks were induced by caspase-activated apoptotic nucleases. This cleavage pattern was in sharp contrast to that observed approximately 200 bp downstream in the exon 12 region, which displayed much stronger apoptotic cleavage but where no double-strand breaks were detected and no t-AML-associated breakpoints were reported. The localization and remarkable clustering of the t-AML breakpoints cannot be explained simply by the DNA cleavage patterns but might result from potential interactions between TOP2 poisoning, apoptotic DNA cleavage, and DNA repair attempts at specific sites of higher-order chromatin structure in apoptosis-evading cells. ELMPCR provides a new tool for investigating the role of DNA topoisomerases in fundamental genetic processes and translocations associated with cancer treatments involving topoisomerase-targeted drugs.  相似文献   

7.
Carnosol is a natural compound with pharmacological action due to its anti‐cancer properties. However, the precise mechanism for its anti‐carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double‐strand breaks (DSBs). We also found that cells lacking tyrosyl‐DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl‐DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1‐DNA cleavage complex (TOP1cc) and TOP2‐DNA cleavage complex (TOP2cc). When comparing the accumulation of γ‐H2AX foci and the number of chromosomal aberrations (CAs) with wild‐type (WT) cells, the susceptivity of the TDP1?/? and TDP2?/? cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti‐cancer effect of carnosol.  相似文献   

8.
9.
The nucleotide preferences of calf thymus topoisomerases I and II for recognition of supercoiled DNA have been assessed by the relaxation and cleavage of DNA containing base-specific phosphorothioate substitutions in one strand. The type I enzyme is inhibited to varying degrees by all modified DNAs, but most effectively (by approximately 60%) if deoxyguanosine 5'-O-(1-thiomonophosphate) (dGMP alpha S) is incorporated into negatively supercoiled DNA. A DNA in which all internucleotide linkages of one strand are phosphorothionate is relaxed, most probably via the unsubstituted strand. The type II enzyme is inhibited when deoxyadenosine 5'-O-(1-thiomonophosphate) (dAMP alpha S) or deoxyribosylthymine 5'-O-(1-thiomonophosphate) is incorporated into the DNA substrate, and the course of the relaxation reaction changes from a distributive mode to a predominantly processive mode. A fully substituted DNA is very poorly relaxed by the type II enzyme, illustrating the strict commitment of the enzyme to relaxation via double-strand cleavage. The sense of supercoiling does not affect the inhibition profile of either enzyme. DNA strand breaks introduced by type II topoisomerase in a normal control DNA or deoxycytidine 5'-O-(1-thiomonophosphate)-substituted DNA on treatment with sodium dodecyl sulfate at low ionic strength are prevented by pretreatment with 0.2 M NaCl. In contrast, breaks in DNA having either dAMP alpha S or all four phosphorothioate nucleotides incorporated in one strand are prevented only with higher NaCl concentrations. Thus indicating activity at the phosphorothioate linkage 5' to dA but not 5' to dC. We conclude that topoisomerase II activity occurs preferentially at sites possessing dAMP or dTMP, and that dGMP is involved in DNA recognition by topoisomerase I.  相似文献   

10.
Diploid human fibroblast strains were treated for 10 min with inhibitors of type I and type II DNA topoisomerases, and after removal of the inhibitors, the rate of initiation of DNA synthesis at replicon origins was determined. By alkaline elution chromatography, 4'-(9-acridinylamino)methanesulfon-m-anisidide (amsacrine), an inhibitor of DNA topoisomerase II, was shown to produce DNA strand breaks. These strand breaks are thought to reflect drug-induced stabilization of topoisomerase-DNA cleavable complexes. Removal of the drug led to a rapid resealing of the strand breaks by dissociation of the complexes. Velocity sedimentation analysis was used to quantify the effects of amsacrine treatment on DNA replication. It was demonstrated that transient exposure to low concentrations of amsacrine inhibited replicon initiation but did not substantially affect DNA chainelongation within operating replicons. Maximal inhibition of replicon initiation occurred 20 to 30 min after drug treatment, and the initiation rate recovered 30 to 90 min later. Ataxia telangiectasia cells displayed normal levels of amsacrine-induced DNA strand breaks during stabilization of cleavable complexes but failed to downregulate replicon initiation after exposure to the topoisomerase inhibitor. Thus, inhibition of replicon initiation in response to DNA damage appears to be an active process which requires a gene product which is defective or missing in ataxia telangiectasia cells. In normal human fibroblasts, the inhibition of DNA topoisomerase I by camptothecin produced reversible DNA strand breaks. Transient exposure to this drug also inhibited replicon initiation. These results suggest that the cellular response pathway which downregulates replicon initiation following genotoxic damage may respond to perturbations of chromatin structure which accompany stabilization of topoisomerase-DNA cleavable complexes.  相似文献   

11.
《The Journal of cell biology》1990,111(5):1753-1762
We have examined the effects of topoisomerase inhibitors on the phosphorylation of histones in chromatin during the G2 and the M phases of the cell cycle. Throughout the G2 phase of BHK cells, addition of the topoisomerase II inhibitor VM-26 prevented histone H1 phosphorylation, accompanied by the inhibition of intracellular histone H1 kinase activity. However, VM-26 had no inhibitory effect on the activity of the kinase in vitro, suggesting an indirect influence on histone H1 kinase activity. Entry into mitosis was also prevented, as monitored by the absence of nuclear lamina depolymerization, chromosome condensation, and histone H3 phosphorylation. In contrast, the topoisomerase I inhibitor, camptothecin, inhibited histone H1 phosphorylation and entry into mitosis only when applied at early G2. In cells that were arrested in mitosis, VM-26 induced dephosphorylation of histones H1 and H3, DNA breaks, and partial chromosome decondensation. These changes in chromatin parameters probably reverse the process of chromosome condensation, unfolding condensed regions to permit the repair of strand breaks in the DNA that were induced by VM- 26. The involvement of growth-associated histone H1 kinase in these processes raises the possibility that the cell detects breaks in the DNA through their effects on the state of DNA supercoiling in constrained domains or loops. It would appear that histone H1 kinase and topoisomerase II work coordinately in both chromosome condensation and decondensation, and that this process participates in the VM-26- induced G2 arrest of the cell.  相似文献   

12.

Background

Etoposide is a cancer drug that induces strand breaks in cellular DNA by inhibiting topoisomerase II (topoII) religation of cleaved DNA molecules. Although DNA cleavage by topoisomerase II always produces topoisomerase II-linked DNA double-strand breaks (DSBs), the action of etoposide also results in single-strand breaks (SSBs), since religation of the two strands are independently inhibited by etoposide. In addition, recent studies indicate that topoisomerase II-linked DSBs remain undetected unless topoisomerase II is removed to produce free DSBs.

Methodology/Principal Findings

To examine etoposide-induced DNA damage in more detail we compared the relative amount of SSBs and DSBs, survival and H2AX phosphorylation in cells treated with etoposide or calicheamicin, a drug that produces free DSBs and SSBs. With this combination of methods we found that only 3% of the DNA strand breaks induced by etoposide were DSBs. By comparing the level of DSBs, H2AX phosphorylation and toxicity induced by etoposide and calicheamicin, we found that only 10% of etoposide-induced DSBs resulted in histone H2AX phosphorylation and toxicity. There was a close match between toxicity and histone H2AX phosphorylation for calicheamicin and etoposide suggesting that the few etoposide-induced DSBs that activated H2AX phosphorylation were responsible for toxicity.

Conclusions/Significance

These results show that only 0.3% of all strand breaks produced by etoposide activate H2AX phosphorylation and suggests that over 99% of the etoposide induced DNA damage does not contribute to its toxicity.  相似文献   

13.
DNA topoisomerase II is believed to be the enzyme that produces the protein-associated DNA strand breaks observed in mammalian cell nuclei treated with various intercalating agents. Two intercalators--4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA, amsacrine) and 2-methyl-9-hydroxyellipticinium (2-Me-9-OH-E+)--differ in their effects on protein-associated double-strand breaks in isolated nuclei. m-AMSA stimulates their production at all concentrations, whereas 2-Me-9-OH-E+ stimulates at low concentrations and inhibits at high concentrations. We have reproduced these differential effects in experiments carried out in vitro with purified L1210 DNA topoisomerase II, and we have found that concentrations of 2-Me-9-OH-E+ above 5 microM prevent the trapping of DNA-topoisomerase II cleavable complexes irrespective of the presence of m-AMSA. It also stimulated topoisomerase II mediated DNA strand passage, again with or without inhibitory amounts of m-AMSA (this result suggests that extensive intercalation by 2-Me-9-OH-E+ destabilized the cleavable complexes). From these data, it is concluded that intercalator-induced protein-associated DNA strand breaks observed in intact eukaryotic cells and isolated nuclei are generated by DNA topoisomerase II and that intercalators can affect mammalian DNA topoisomerase II in more than one way. They can trap cleavable complexes and inhibit DNA topoisomerase II mediated DNA relaxation (m-AMSA and low concentrations of 2-Me-9-OH-E+) or destabilize cleavable complexes and stimulate DNA relaxation (high concentrations of 2-Me-9-OH-E+).  相似文献   

14.
L Yang  T C Rowe  E M Nelson  L F Liu 《Cell》1985,41(1):127-132
The antitumor drug, m-AMSA (4'-(9-acridinylamino)-methanesulfon-m-anisidide), is known to interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by blocking the enzyme-DNA complex in its putative cleavable state. Treatment of SV40 virus infected monkey cells with m-AMSA resulted in both single- and double-stranded breaks on SV40 viral chromatin. These strand breaks are unusual because they are covalently associated with protein. Immunoprecipitation results suggest that the covalently linked protein is DNA topoisomerase II. These results are consistent with the proposal that the drug action in vivo involves the stabilization of a cleavable complex between topoisomerase II and DNA in chromatin. Mapping of these double-stranded breaks on SV40 viral DNA revealed multiple topoisomerase II cleavage sites. A major topoisomerase II cleavage site was preferentially induced during late infection and was mapped in the DNAase I hypersensitive region of SV40 chromatin.  相似文献   

15.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

16.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

17.
18.
M P Lee  T Hsieh 《Nucleic acids research》1992,20(19):5027-5033
Anti-tumor drug VM26 greatly stimulates topoisomerase II mediated DNA cleavage by stabilizing the cleavable complex. Addition of a strong detergent such as SDS to the cleavable complex induces the double stranded DNA cleavage. We demonstrate here that heat treatment can reverse the double stranded DNA cleavage; however, topoisomerase II remains bound to DNA even in the presence of SDS. This reversed complex has been shown to contain single strand DNA breaks with topoisomerase II covalently linked to the nicked DNA. Chelation of Mg++ by EDTA and the addition of salt to a high concentration also reverse the double strand DNA cleavage, and like heat reversion, topoisomerase II remains bound to DNA through single strand DNA break. The reversion complex can be analyzed and isolated by CsCl density gradient centrifugation. We have detected multiple discrete bands from such a gradient, corresponding to protein/DNA complexes with 1, 2, 3, ..... topoisomerase II molecules bound per DNA molecule. Analysis of topoisomerase II/DNA complexes isolated from the CsCl gradient indicates that there are single stranded DNA breaks associated with the CsCl stable complexes. Therefore, topoisomerase II/DNA complex formed in the presence of VM26 cannot be completely reversed to yield free DNA and enzyme. We discuss the possible significance of this finding to the mechanism of action of VM26 in the topoisomerase II reactions.  相似文献   

19.
20.
Effects of Modifying Topoisomerase II Levels on Cellular Recovery from Radiation Damage. Experiments were performed with the budding yeast, Saccharomyces cerevisiae, to test whether DNA topoisomerase II is involved in repair of DNA damage induced by ionizing radiation. Topoisomerase II was inactivated by use of a temperature-sensitive mutation. Enzyme inactivation increased cellular radiosensitivity, blocked the restitution of broken chromosomes, assayed by pulsed-field gel electrophoresis, and prolonged the induction of a DNA damage-inducible gene (RNR3). Overexpression of the topoisomerase II gene did not alter cellular radiosensitivity. The data support a role for topoisomerase II in the repair of DNA strand breaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号