首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adriamycin was found to be both mutagenic and clastogenic to L5178Y/TK(+/-)-3.7.2C mouse lymphoma cells. A dose of only 5 ng/ml (survival = 62% or 67%) gave an induced TK mutant frequency of 307 or 296 per 10(6) survivors in two separate experiments. This dose was also clastogenic, inducing 20 chromosome aberrations/100 cells analyzed. The majority of the mutants were small-colony mutants, indicating that adriamycin likely acts primarily by a clastogenic mechanism.  相似文献   

2.
We evaluated the ability of proflavin to induce specific-locus mutations at the heterozygous thymidine kinase (tk) locus of L5178Y/TK +/- -3.7.2C mouse lymphoma cells, which appears to permit the recovery of mutants due to single-gene and chromosomal mutations. Proflavin was highly mutagenic at the tk locus, producing 724-965 TK mutants/10(6) survivors (background = 56-85/10(6); survival = 29-32%). Most of the mutants were small colonies, which suggested that proflavin may induce chromosomal mutations. The potent clastogenicity of proflavin was confirmed by cytogenetic analysis for chromosomal aberrations. At the highest dose analyzed (1.5 micrograms/ml), proflavin produced 82 aberrations/100 metaphaes (background = 2/100). The large-colony TK mutant frequency produced by proflavin (48-109/10(6) survivors; background = 23/10(6); survival = 57-61%) was similar to published HPRT mutant frequencies produces by proflavin in L5178Y and CHO cells (50-100/10(6) survivors; background = 2-50/10(6); survival = 50-62%). These results lead to the conclusion that proflavin is a potent clastogen and induces a high frequency of small-colony TK mutants; however, it induces a low frequency of HPRT mutants and a low frequency of large-colony TK mutants.  相似文献   

3.
2-Amino-6-N-hydroxyadenine (AHA) treated L5178Y/TK (+/-)-3.7.2C mouse lymphoma cells were evaluated for mutations at the tk, hgprt, and Na+/K+ ATPase loci, as well as for gross chromosome aberrations and induction of micronuclei. In addition, AHA was evaluated for its ability to induce HGPRT mutants in CHO cells. AHA was found to induce mutations at all evaluated loci and in both cell types. The TK mutants were primarily large colonies although a few small colonies were also induced, particularly at the higher concentrations. Preliminary cytogenetic analysis of AHA-treated mouse lymphoma cells indicated that some gross aberrations but not micronuclei were induced. The 20 small-colony TK mutants evaluated by banded karyotype indicate that only a small fraction (2 of 20) showed chromosome 11 abnormalities. From these studies, it appears that AHA may be one of a very few chemicals that is capable of inducing multi-locus point mutations, with only slight clastogenic activity. Particularly at the higher concentrations, some of the mutants may contain multi-locus point mutations that result in slow growth.  相似文献   

4.
Mouse lymphoma cells of the L5178Y TK+/- -3.7.2C line were exposed to sidestream and mainstream cigarette smoke condensates (CSC). Cells which survived the trifluorothymidine (TFT) challenge fell in 2 classes: large- and small-colony formers. Southern blot analysis of NcoI-digested DNA from mutant colonies yielded 2 distinct restriction fragment banding patterns when probed with the thymidine kinase (TK) cDNA clone pMtk4. One such pattern was composed of 4 bands at 6.4, 5.5, 4.7 and 2.9 kilobase pairs (kb) and was identical to that of TK+/- controls. A second pattern differed from the first only in the absence of the 6.4-kb band. The majority (83/95) of both large and small colonies derived from cells exposed to CSC exhibited restriction fragment banding patterns lacking the 6.4-kb band. The data from the present study suggest that there is no association between mutant colony size and the presence of the 6.4-kb NcoI restriction fragment at the TK locus in the mouse lymphoma mutants analyzed.  相似文献   

5.
TFT is an effective selective agent for TK-deficient mutants of L5178Y TK+/- -3.7.2C mouse lymphoma cells. Mutants can be classified by colony size into small colonies (many of which show readily observable chromosome abnormalities associated with chromosome 11--the location of the TK gene) and large colonies (which may represent events affecting only the expression of the TK gene). The precise nature of the induced damage causing the loss of the TK-enzyme activity for both mutant type is not known and is currently under investigation. The hypomethylating agent 5-azacytidine can be utilized to investigate the possibility that mutants might be the result of a suppressed rather than an altered TK gene. Mutant cell lines are treated with 5-azacytidine and then evaluated for re-expression of the TK enzyme as measured by resistance to THMG. In these studies, 11 mutants have been evaluated. None of the 11, including 10 small-colony mutants (6 with chromosome 11 translocations) and 1 large-colony mutant, show a high conversion to TK competency following 5-azacytidine treatment.  相似文献   

6.
Mutagenicity of actinomycin D in mammalian cells due to clastogenic effects   总被引:1,自引:0,他引:1  
Actinomycin D was clastogenic and mutagenic in L5178Y/TK +/- -3.7.2C mouse lymphoma cells. The majority of the mutants were small colonies, indicating that actinomycin D acts primarily by a clastogenic mechanism.  相似文献   

7.
Genotoxicity of gamma-irradiation in L5178Y mouse lymphoma cells   总被引:1,自引:0,他引:1  
The ability of gamma-irradiation to induce gene mutation at the thymidine kinase locus and gross chromosome aberrations in L5178Y TK+/- 3.7.2C mouse lymphoma cells was evaluated. Positive results were obtained for both end-points. The majority of mutants were found to be small-colony mutants which correlated with the induction of gross chromosome aberrations.  相似文献   

8.
Evidence has been accumulating that conditions of nonphysiological pH may affect the results of in vitro genetic tests by mechanisms unrelated to the chemical being tested. Medium was pH-adjusted with HCl, NaOH or with organic buffers (Good's zwitterions). In the absence of S9 mix, no changes in mutant frequency were observed over a pH range of 6.4-9.2; a small, 1.9-fold increase was observed for a moderately toxic treatment (24% relative growth) at pH 6.3. However, in the presence of S9 mix, the mutant frequency increased sharply for pH values below 6.8. At pH 6.4, a 4-fold increase was induced, and pH 6.0 resulted in a 10-fold increase in mutant frequency. Basic pH shifts in the presence of S9 mix caused no changes in mutant frequency up to pH 8.0; treatment with pH 8.8 was highly toxic (5.3% relative growth) and caused a 3-fold increase in mutant frequency. Thirteen mutant clones induced at pH 6.0 with S9 mix were challenged with trifluorothymidine after their expansion in nonselective medium and all retained their resistance; another 14 clones were tested for thymidine utilization and all incorporated only 0.1-5.5% of the 14C-labeled thymidine used by the parental line. The induced mutants were primarily of the small-colony phenotype, which indicated clastogenic activity. This was confirmed with chromosome studies which showed a large increase in cells with aberrations consisting of chromatid breaks and complex rearrangements. The results show that the combination of weak acidity (pH 6-6.8) and S9 mix is mutagenic and clastogenic to L5178Y TK+/- cells.  相似文献   

9.
Mutagenesis assays at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells frequently yield mutant colonies with a bimodal size distribution. The objectives of this study were to determine whether a relationship exists between mutant colony size and chromosomal aberrations and whether the colony-size distributions obtained from this assay can indicate the clastogenic activity of a test chemical. Cells from 8 different types of L5178Y mouse lymphoma cell colonies were examined for chromosomal abnormalities within 10 cell generations after colony isolation. The colonies included small (sigma) and large (lambda) unselected cell (UC) and trifluorothymidine-resistant (TFTr) colonies derived from TK +/- cell cultures treated with the solvent dimethyl sulfoxide (DMSO) or hycanthone methanesulfonate (HYC). Chromosome abnormalities were present in cells from 12% (7/60) of the UC colonies, but there was no apparent relationship between colony diameter and the presence of chromosomal abnormalities. Abnormalities affecting chromosome 11, which is believed to be the site of the TK gene, were not observed in cells from UC colonies. Abnormalities affecting chromosome 11 were observed only in cells from sigma-TFTr colonies irrespective of whether they were spontaneous (5/15 colonies) or induced by HYC (4/15 colonies). Overall, 30% (9/30) of sigma-TFTr colonies had cells with an abnormal chromosome 11 and 10% (3/30) had abnormalities affecting other chromosomes. Abnormalities affecting chromosome 11 were not observed in cells from lambda-TFTr colonies (0/30 colonies). The observation of only 30% of sigma-TFTr colonies with chromosome damage affecting chromosome 11 indicates that other mechanisms, in addition to chromosome damage at the level of resolution used in this study (i.e., 200-300 chromosome bands). contribute to small TFTr colony size.  相似文献   

10.
Study of the mutagenic action of methyl nitrosourea (MNU) on the CHO-AT3-2 Chinese hamster cell at 2 regimes of cell treatment (a short-term regime and prolonged 1-h treatment) revealed that increase in the duration of treatment enhanced both cell lethality and clastogenic and mutagenic effects at the TK locus and did not influence the mutation frequency at the OUAr locus. On the basis of kinetic considerations it can be concluded that the base-pair substitution-type mutants (e.g., OUAr) appear as a result of DNA alkylation and the mutants at loci with a wide spectrum of registered mutants (the TK locus) are related to a greater extent to the carbamoylating activity of MNU. This conclusion is confirmed by measurements of the effects of sequential treatment with MNU (7 min) and KNCO (1 h). A synergistic increase in lethality, clastogenicity and mutagenicity at the TK locus was found in experiments with the combined treatment of cells with ethyl methanesulfonate (EMS) and KNCO. Besides, pretreatment of cells with potassium cyanate and subsequent exposure to MNU, EMS and benzopyrene (BP) produced synergistic effects in all the tests: lethality, clastogenicity and mutation frequency at the OUAr and TK loci. Posttreatment of cells with KNCO also led to a synergistic increase in the effects of MNU, EMS and BP treatment in several tests, but not in the OUAr locus. The possible mechanism and levels of interactions between alkylation and carbamoylation and the possibility that potassium cyanate causes supramolecular lesions are discussed.  相似文献   

11.
The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.  相似文献   

12.
It has been reported that low pH itself can be clastogenic to Chinese hamster ovary cells or mouse lymphoma L5178Y cells. On the other hand, there was no indication that low pH is clastogenic to rat or human lymphocytes. Therefore, in order to evaluate the generality of clastogenicity of low pH conditions, chromosomal aberration tests were carried out on Chinese hamster cell line cells (CHO-K1, CHL, Don and V79 379A) and human cells (HeLa and peripheral lymphocytes used as whole-blood cultures). The cytotoxicity of low pH to each cell line was also evaluated by counting surviving cells. The treatment medium used was Eagle's MEM containing 15 mM MES or Bis-Tris as an organic buffer to maintain the acidity of the medium for the 6-h or 24-h treatment period, and pH adjustment was done with NaOH or HCl. Chromosomal aberrations were induced at pH 6.5 or below in CHO or CHL cells, and the maximum frequency was 24.7% at pH 6.0 or 34% at pH 6.3, respectively. About 5-10% of Don or HeLa cells had aberrations over the range of pH 6.6-6.0 or pH 6.6-6.3, respectively. In V79 379A cells or human lymphocytes, however, aberrant cells amounted to about 8% at near pH 6.0, where cell survival was low (less than 20%). About 90% of aberrations induced in each cell line examined were chromatid-type gaps and breaks. When CHO or CHL cells were treated with acidic medium for 6 h plus 18 h recovery in fresh medium, about 20% of cells had aberrations including chromatid exchanges at pH 5.5 or pH 5.7, respectively. These results indicate that clastogenicity of low pH is a general finding, although the extent of it varies with cell type, and that the clastogenicity is associated with varying extents of cytotoxicity. The mechanisms of clastogenesis at low pH are not known, but might involve inhibition of DNA or protein synthesis or DNA-repair enzymes.  相似文献   

13.
L5178Y/TK +/- cells treated with methyl methanesulfonate (MMS) were allowed to recover for 0,48,96,144, or 240 hours, and were then plated in soft-agar medium containing trifluorothymidine (TFT). Dose-dependent and consistent increases in the frequency of TFTR cells were observed after each of the 48-240-hour expression periods through the counting of predominantly large, mutant colonies. Size distributions of soft-agar colonies from either MMS-treated or control cells were bimodal in the presence, and unimodal in the absence, of TFT. An increase of small, presumptive TFTR colonies with either increasing MMS concentration or decreasing recovery time was probably a manifestation of chemical toxicity, for a similar increase in small-colony number was observed in the absence of TFT when cells were cloned immediately after MMS treatment, when no induced mutants were yet detectable. Recloning experiments with 22 small-colony-derived cell lines revealed that, with one exception, small-colony morphology was not a heritable trait. While all large- and some small-colony-derived stocks from MMS-treated cells were of the phenotypically stable TK-/- type; spontaneous small TFTR colonies generally were not, their occurrence being directly correlated with serum concentration. No aneuploidy was evident in MMS-treated cell lines several generations after isolation as small TFTR colonies. These results suggest that delayed MMS cytotoxicity in TK +/- cells can temporarily produce increased physiological resistance to TFT in some cells, giving rise to secondary populations of small-colony TFTR variants.  相似文献   

14.
The halocarbon BCF was tested in 3 assays to assess its mutagenicity and clastogenicity. It produced a positive response in Salmonella typhimurium strain TA1535 but was negative in TA1537, TA1538, TA98 and TA100. In an L5178Y mouse lymphoma microwell assay (TK locus), BCF was negative. BCF was administered at 5000 and 50 000 ppm in air for 6 h to groups of C57B1/6J mice of both sexes. Animals were killed at 24, 48 and 72 h after cessation of exposure and the incidence of bone marrow micronuclei per 1000 PCEs determined. There was no significant difference in the incidences of micronuclei between untreated animals and those exposed to either concentration of BCF at any of the sampling times. These results suggest that BCF is mutagenic in vitro in only one strain of Salmonella; in mammalian cells the compound induced no gene mutation in vitro nor clastogenic activity in vivo at doses that also produced clear evidence of toxicity.  相似文献   

15.
Since the finding that the mouse lymphoma L5178Y TK+/- ----TK-/- forward mutational assay system can detect and distinguish a range of genetic lesions, including large chromosomal aberrations and smaller, perhaps point mutational events, the chromosomal analysis of these lesions at the highest possible level of band resolution has become increasingly important. We have developed an acridine orange/colcemid/hypotonic treatment for TK-/- mutants to provide high-resolution chromosomes with over 500 G-bands for breakpoint analysis. Using such high-resolution procedures, we find that independently induced small-colony mutants show rearrangements in the distal portion of chromosome 11, with breakpoints occurring between bands B3 and E1.2. This finding of a range of chromosomal breakpoints in different TK-/- mutants complements recent molecular genetic analysis of mutants and is consistent with the hypothesis that chromosomal lesions in small-colony mutants may affect a large portion of the genome in the vicinity of the tk-1 gene.  相似文献   

16.
High-resolution chromosome preparations from L5178Y TK+/- 3.7.2C mouse lymphoma cells were obtained using acridine orange in the cell harvest procedure. With this technique it is possible to visualize over 500 bands in elongated mouse lymphoma cell chromosomes as compared to the approximately 230 bands visualized in metaphase preparations. High-resolution lymphoma cell chromosomes are described, and chromosome rearrangements carried in the cell line are characterized by ideograms representing the position, number, size, and relative staining intensity of the G-band patterns. Use of elongated chromosomes of mouse lymphoma TK+/- mutants should facilitate analysis of the cytogenetic effects associated with TK+/- ----TK-/- mutagenesis.  相似文献   

17.
The antitumor drug teniposide (VM-26) is a potent inducer of DNA breaks (Long et al., Cancer Res., (1985) 45, 3106), but it is only weakly mutagenic at the hprt locus in CHO cells (Singh and Gupta, Cancer Res., (1983) 43, 577). In the present study, the mutagenic and clastogenic activities of teniposide were evaluated in L5178Y/TK +/- -3.7.2C mouse lymphoma cells. Although teniposide is a weak mutagen at the hprt locus, it is a potent mutagen at the tk locus, with as little as 0.5 ng/ml producing 220 TK mutants/10(6) survivors at 96% survival (background = 100/10(6) survivors). This same dose of teniposide induced 38 aberrations per 100 metaphases (background = 7/100 cells). At 7 ng/ml, teniposide induced approximately 2700 TK mutants/10(6) survivors at approximately 10% survival. At the highest dose sampled for aberration analysis (5 ng/ml), teniposide induced 44 aberrations/100 cells. Most of the aberrations were chromosomal rather than chromatid events. As expected for a compound acting primarily by a clastogenic mechanism, most of the TK mutants were small colonies. Thus, teniposide is a potent clastogen, and it is a potent mutagen at the tk locus but not at the hprt locus. These results support the hypothesis that the location of the target gene affects the ability of the assay to detect both intragenic events and events causing functional multilocus effects. Thus, a heterozygous locus (like tk) but not a functionally hemizygous locus (like hprt) may permit the detection of mutagens that act primarily by a clastogenic mechanism. Because teniposide induces topoisomerase II-associated DNA breaks, and because there is evidence that teniposide may not interact directly with DNA, we discuss the possibility that the potent clastogenic/mutagenic activity of teniposide may be mediated by topoisomerase II.  相似文献   

18.
Three classes of TFTr variants of L5178Y/TK+/- -3.7.2C mouse lymphoma cells can be identified--large colony (lambda), small colony (sigma), and tiny colony (tau). The sigma and lambda mutants are detectable in the routine mutagenesis assay using soft agar cloning. The tau mutants are extremely slow growing and are quantitated only in suspension cloning in microwells. Variants of all three classes have been analyzed in the process of evaluating the usefulness of the thymidine kinase locus in L5178Y/TK+/- mouse lymphoma cells for detecting induced mutational damage. 150 of 152 variants from mutagen treated cultures and 163 of 168 spontaneous mutants were TFTr when rechallenged approximately 1 week after isolation (3 weeks after induction). All of the 41 mutants assayed for enzyme activity were TK-deficient. The sigma and tau phenotypes were found to correlate with slow cellular growth rates (doubling time greater than 12 h), rather than from effects of the TFT selection or mutagen toxicity. Cytogenetic analysis of sigma mutants approximately 3 weeks after induction shows an association between the sigma phenotype and readily observable (at the 230-300 band level) chromosomal abnormalities (primarily translocations involving that chromosome 11 carrying the functional TK gene) in 30 of 51 induced mutants studied. Using an early clonal analysis of mutants (approximately 2 weeks after induction) 28 of 30 sigma mutants showed chromosome 11 rearrangements. All lambda mutants studied (17 of 17 evaluated 3 weeks after induction and 8 of 8 evaluated 2 weeks after induction) showed normal karyotypes (at the 230-300 band resolution level), including the chromosome 11s. These observations support the hypothesis that sigma (and likely tau) mutants represent chromosomal mutations and lambda mutants represent less extensive mutations affecting the TK locus. The inclusion of sigma mutants in the total induced mutant frequency, as well as distinguishing them as a separate subpopulation of TK-deficient mutants, is, therefore, essential in obtaining maximum utility of the information provided by the L5178Y/TK+/- mouse lymphoma assay.  相似文献   

19.
The L5178Y/TK+/? → TK?/? mouse lymphona mutagen assay, which allows selection of forward mutations at the autosomal thymidine kinase (TK) locus, uses a TK+/? heterozygous cell line, TK+/? 3.7.2C. Quantitation of colonies of mutant TK?/? cells in the assay forms the basis for calculations of mutagenic potential of test compounds. We have evaluated the banded karyotypes of the parent TK+/? heterozygous cell line, as well as homozygous TK?/? mutants, in order to relate the genetic and morphological properties of mutant colonies. The parent cell line displays karyotype homogeneity, all cells containing normal mouse chromosomes, readily identifiable chromosome rearrangements, and cell line specific marker chromosomes. Mutant TK?/? colonies of the TK+/? 3.7.2C cell line form a bimodal frequency distribution of colony sizes for most mutagenic or carcinogenic test substances. Large-colony (λ) TK?/? mutants with normal growth kinetics appear karyotypically identical within and among clones and with the TK+/? parental cell line. In contrast, most slow-growing small-colony (σ) TK?/? mutants have readily recognizable chromosome rearrangements involving chromosome 11, which contains the thymidine kinase gene locus. It is possible that the heritable differences in growth kinetics and resultant colony morphology in λ and σ mutants are related to the type of chromosomal damage sustained. Large-colony mutants receive minimal damage, possibly in the form of point mutations at the TK locus, while small-colony mutants receive damage to other genetic functions coordinately with loss of TK activity, implying gross insult to chromosomal material. It seems likely that λ and σ mutants result from 2 different mutational mechanisms that may be distinguished on the basis of mutant colony morphology.  相似文献   

20.
Single intraperitoneal (i.p.) treatment of male and female BDF1 (C57B1 x DBA2) mice with urethane (0.5 or 1.0 g/kg) caused a significant increase in micronucleated polychromatic erythrocytes (MNPCE) in bone marrow after 24 h. The clastogenic effect observed was dose-, sex- and age-dependent, the male and younger (6-8 weeks old) animals being more susceptible than the female and older (6 months of age) mice. 3-week oral treatment of female Balb/c mice with urethane (3 g/l added to the drinking water) caused an up to 4-fold increase in the number of micronucleated normochromatic erythrocytes (MNNCE) in mouse peripheral blood. In a month after the carcinogen treatment was stopped, the number of MNNCE dropped to the control values. In addition, a single i.p. treatment of pregnant BDF1 mice on day 17 of gestation with urethane (1.0 g/kg) caused a 514.3% (p less than 0.001) elevation of MNPCE in mouse fetal liver after 24 h as well as a 154.4% (p less than 0.05) increase in MNPCE frequency in the fetal peripheral blood. At this time point, the clastogenic response in mouse fetal liver erythroblasts was less pronounced than that detected in the maternal bone marrow cells. Urethane is a strong clastogen in mice when administered either intraperitoneally or orally and the micronucleus test applied to adult and fetal erythroblasts is a convenient method of choice for studying the acute and subchronic clastogenicity of this carcinogen, its transplacental effects as well as the influence of modifying factors on these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号