首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Pyridine nucleotide transhydrogenase activities of a highly purified soluble NADH dehydrogenase and particulate NADH-ubiquinone reductase (Complex I) differ in their pH optima (5.0 and 6.0, respectively) and in their sensitivity to inhibition by Mg2+ and ATP. The oxidation of NADPH with ferricyanide as acceptor is very similar in both preparations with a pH optimum around 5.0. It is concluded that Complex I possesses two types of transhydrogenase activity, whereas only one has been found in the soluble dehydrogenase.  相似文献   

4.
Lipoamide dehydrogenase (NADH:lipoamide oxidoreductase EC 1.6.4.3) has been isolated from Ascaris suum muscle mitochondria. This activity has been purified to apparent homogeneity from both the pyruvate dehydrogenase complex and from 150,000g mitochondrial supernatants which were devoid of pyruvate dehydrogenase complex activity. The enzymes from both sources exhibited similar kinetic, catalytic, and regulatory properties and appear to be identical as judged by polyacrylamide gel electrophoresis. The native enzyme acts as a dimer, containing 2 mol of FAD, and has a subunit molecular weight of 54,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel chromatography. The enzyme also possesses substantial NADH:NAD+ transhydrogenase activity. Heat denaturation and differential solubilization experiments imply that the transhydrogenase activity previously reported is, in fact, associated with the lipoamide dehydrogenase moiety of the Ascaris pyruvate dehydrogenase complex. Whether or not this activity functions physiologically in hydride ion translocation, as previously suggested, remains to be demonstrated.  相似文献   

5.
1. Glutathione reductase and lipoamide dehydrogenase are structurally and mechanistically related flavoenzymes catalyzing various one and two electron transfer reactions between NAD(P)H and substrates with different structures. 2. The two enzymes differ in their coenzyme and functional specificities. Lipoamide dehydrogenase shows higher coenzyme preference while glutathione reductase displays greater functional specificity. 3. Binding preference of the two flavoenzymes for nicotinamide coenzymes is demonstrated by 31P-NMR spectroscopy. 4. The presence of arginines in glutathione reductase which is inactivated by phenyl glyoxal, is likely to be responsible for the NADPH-activity of glutathione reductase. 5. The substrate binding sites of the two enzymes are similar, though their functional details differ. 6. The active-site histidine of glutathione reductase functions primarily as the proton donor during catalysis. While the active-site histidine of lipoamide dehydrogenase stabilizes the thiolate anion intermediate and relays a proton in the catalytic process.  相似文献   

6.
A novel reaction catalysed by lipoamide dehydrogenase is described. In the presence of NADH, lipoamide dehydrogenase reduces the nitro group of 4-nitropyridine and 4-nitropyridine N-oxide. The elution profiles from a DEAE-cellulose column for the dehydrogenase and nitroreductase activities are identical. Chemical modifications of critical amino acid residues suggest that the two activities share a common catalytic domain. Nitro reduction catalysed by lipoamide dehydrogenase was monitored spectrophotometrically and chromatographically. The major product from the enzymic reduction of 4-nitropyridine was isolated and characterized structurally as NN-bis(pyridinyl)hydroxylamine, which is formed presumably via 4-hydroxyaminopyridine in a four-electron redox reaction.  相似文献   

7.
8.
9.
F Widmer  N O Kaplan 《Biochemistry》1976,15(21):4693-4699
Mechanisms involved in the action of the pyridine nucleotide transhydrogenase from Pseudomonas aeruginosa (EC 1.6.1.1) have been investigated by means of kinetic studies and fluorescence titration. Our results, as well as those from previous investigations, suggest that the allosteric MWC model (Monod, J., Wyman, J., and Changeux, J. P. (1965), J. Mol. Biol. 12, 88-118) may be used as a first step for the explanation of the properties of the transhydrogenase. The basic reaction of the enzyme is the oxidation of reduced triphosphopyridine nucleotide (TPNH) by diphosphopyridine nucleotide (DPN+). In terms of the model, the functional R state is favored by TPNH, whereas the product triphosphopyridine nucleotide (TPN+) behaves as an allosteric inhibitor, and is therefore assumed to favor the nonfunctional T state. To a slight extent, the T state is also favored by inorganic phosphate. On the other hand, adenosine 2'-monophosphate and several other 2'-phosphate nucleotides function as activators, and hence are presumed to shift the allosteric equilibrium toward the R state. The studies in this paper suggest a specific regulatory site for the transhydrogenase.  相似文献   

10.
1. Kinetic studies of lipoamide dehydrogenase and its modified enzymes catalyzing lipoamide oxidoreduction and ancillary reactions at various pH are compared. 2. The asymptotic kinetics of lipoamide oxidoreductions switch between the ping pong and ordered mechanisms by varying pH of the reactions. 3. pH-rate profiles of these reactions are bell-shaped suggesting the participation of 2 ionizable residues with pK values of 6.6 +/- 0.5 and above 8 respectively. 4. The unusually high pK value for the catalytic site histidine is attributed to its involvement in an ion-pair formation. 5. In the absence of the catalytic site histidine, the pH-rate profile for the lipoamide reduction of the photooxidized enzyme is no longer bell-shaped but it is similar to those of the transhydrogenation and NADH-oxidation of the native enzyme. 6. This implies the participation of a low-pK protonated group in these reactions.  相似文献   

11.
12.
13.
Kinetic studies of formate dehydrogenase   总被引:4,自引:1,他引:3       下载免费PDF全文
1. The kinetic mechanism of formate dehydrogenase is a sequential pathway. 2. The binding of the substrates proceeds in an obligatory order, NAD(+) binding first, followed by formate. 3. It seems most likely that the interconversion of the central ternary complex is extremely rapid, and that the rate-limiting step is the formation or possible isomerization of the enzyme-coenzyme complexes. 4. The secondary plots of the inhibitions with HCO(3) (-) and NO(3) (-) are non-linear, which suggests that more than one molecule of each species is able to bind to the same enzyme form. 5. The rate of the reverse reaction with carbon dioxide at pH6.0 is 20 times that with bicarbonate at pH8.0, although no product inhibition could be detected with carbon dioxide. The low rate of the reverse reaction precluded any steady-state analysis as the enzyme concentrations needed to obtain a measurable rate are of the same order as the K(m) values for NAD(+) and NADH.  相似文献   

14.
15.
16.
17.
A weak NADH oxidase activity of lipoamide dehydrogenase at neutral pH is increased as much as 15-fold by the addition of KI or (NH4)2SO4. The addition of NAD+ shifts the optimum pH for the KI-induced oxidase activity from 6.3 to 5.5 without changing the maximum activity. The optimum pH is similarly shifted to 5.6 when sulfhyldryl groups of the enzyme are oxidized in the presence of small amount of cupric ion. The NADH: lipoamide and NADH: p-benzoquinone reductase activities are strongly inhibited by KI but both are increased by the presence of (NH4)2SO4. The known intermediate having a charge-transfer band at 530 nm can be seen upon an addition of NADH to the enzyme in the presence of (NH4)2SO4 but not in the presence of KI. The enzyme flavin is reductase by a stoichiometric amount of NADH when KI is present.  相似文献   

18.
Kinetic studies of liver alcohol dehydrogenase   总被引:1,自引:8,他引:1       下载免费PDF全文
  相似文献   

19.
P F Cook 《Biochemistry》1982,21(1):113-116
A combination of kinetic and isotope effect studies in the presence and absence of the effectors ADP and GTP was used to elucidate the mechanism of regulation of bovine liver glutamate dehydrogenase. ADP at low concentrations of glutamate competes with TPN for free enzyme. GTP exhibits a similar effect at high concentrations (100 microM and above). When ADP binds at its allosteric site, it increases the off rates of both alpha-ketoglutarate and TPNH from their product complexes. This results in a decrease in V/K for both substrates, an increase in V, and an increase in the deuterium isotope effects for all three parameters so that they are all about 1.3. The rate of release of glutamate from E-TPNH-glutamate is also apparently enhanced since no substrate inhibition by glutamate is observed in the presence of ADP. The effect of GTP is in opposition to that of ADP in that GTP decreases the off rates for both TPN and glutamate from E-TPN-glutamate as well as the off rates for alpha-ketoglutarate and TPNH. This results in an increase in the V/K's for both substrates, a decrease in V, and a decrease in the deuterium isotope effects for all three parameters to a value of 1. Substrate inhibition by glutamate is also eliminated by GTP probably by preventing any significant accumulation of E-TPNH to which glutamate binds as an inhibitor.  相似文献   

20.
1. The two cysteine residues forming the disulphide bridge that comprises part of the active site of lipoamide dehydrogenase from pig heart were specifically labelled with iodo[2-(14)C]acetic acid. 2. A tryptic peptide containing these carboxymethylcysteine residues was isolated from digests of reduced and S-carboxymethylated lipoamide dehydrogenase and its amino acid sequence of 23 residues was determined. 3. The sequence is highly homologous with a similar sequence containing the active-site disulphide bridge of lipoamide dehydrogenase derived from the 2-oxoglutarate dehydrogenase complex of Escherichia coli (Crookes strain) and it is probable that, as in the bacterial enzyme, the disulphide bridge forms an intrachain loop containing six residues. The results indicate that the bacterial and mammalian proteins have a common genetic origin. 4. Amino acid sequences containing six other unique carboxymethylcysteine residues were also partly determined. 5. The analysis of the primary structure thus far is consistent with the view that the enzyme (mol.wt. approx. 110000) is composed of two identical polypeptide chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号