首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythrocyte protein phosphorylation   总被引:8,自引:0,他引:8  
  相似文献   

2.
3.
4.
Cytokine regulation of protein phosphorylation   总被引:3,自引:0,他引:3  
  相似文献   

5.
The origins of protein phosphorylation   总被引:4,自引:0,他引:4  
Cohen P 《Nature cell biology》2002,4(5):E127-E130
The reversible phosphorylation of proteins is central to the regulation of most aspects of cell function but, even after the first protein kinase was identified, the general significance of this discovery was slow to be appreciated. Here I review the discovery of protein phosphorylation and give a personal view of the key findings that have helped to shape the field as we know it today.  相似文献   

6.
Alkali-stable phosphorylation of proteins, particularly phosphotyrosine and phosphohistidine, is an important phenomenon in cells. In the case of phosphohistidine and some other phosphoamino acids, the phosphorylation is acid-labile and in these cases studies have been severely limited by the absence of a rapid assay suitable for acid-labile phosphorylation. The assay presented here involves a conventional kinase assay reaction followed by mild alkaline hydrolysis and adsorption of the product to washed Nytran paper at high pH. After further washing, at pH 9, the radioactivity on the papers is determined by liquid scintillation counting. Hence, acid-labile phosphorylation is preserved. The assay is selective for alkali-stable phosphorylation but not fully specific, mainly due to the need to balance the severity of the partial alkaline hydrolysis with the stability of the protein-peptide bonds. The assay has been used for the purification and characterization of a protein histidine kinase from Saccharomyces cerevisiae.  相似文献   

7.
8.
Ganglioside-modulated protein phosphorylation in myelin   总被引:5,自引:0,他引:5  
Gangliosides have profound effects on the phosphorylation of several proteins in myelin. Addition of polysialogangliosides to purified guinea pig brain myelin enhanced the endogenous phosphorylation of a 62-kDa phosphoprotein, but completely inhibited the phosphorylation of myelin basic protein (MBP) (18.5 kDa). The ganglioside-stimulated phosphorylation of the 62-kDa protein was dose-dependent and -specific. Asialo-GM1, ceramide trihexosides, N-acetylneuraminic acid, or colominic acid alone could not mimic this effect, suggesting that the activation process requires both the hydrophobic head group and the anionic character of the gangliosides. Studies on the time course of this reaction revealed that it was a rapid and reversible process and was affected only very slightly by Ca2+. Thus, the stimulatory effect of gangliosides may not involve Ca2+-gangliosides complexes or proteolysis, but may be mediated through an activation of a ganglioside-dependent protein kinase or due to substrate protein-glycolipid interaction. Modulation of the phosphorylation of MBP by gangliosides varies with the states of phosphorylation of this protein. Prior addition of ganglioside to myelin inhibited the phosphorylation of MBP. However, addition of gangliosides to myelin subsequent to maximal phosphorylation of MBP retarded the dephosphorylation of this protein. Phosphorylation of isolated MBP by protein kinase C was stimulated by gangliosides, provided phosphatidylserine was present. In contrast, the glycolipid inhibited the phosphorylation of a unique site catalyzed by cAMP-dependent protein kinase. This site was distinct from those phosphorylated by protein kinase C and was also sensitive to chymotryptic cleavage. Although the exact physiological significance of protein phosphorylation in myelin has yet to be established, gangliosides may play an important role in the modulation of this reversible post-translational modification mechanism.  相似文献   

9.
Grant  Philip  Pant  Harish C. 《Brain Cell Biology》2000,29(11-12):843-872
Neurofilament proteins, a major intermediate filament component of the neuronal cytoskeleton, are organized as 10 nm thick filaments in axons and dendrites. They are large, abundantly phosphorylated proteins with numerous phosphate acceptor sites, up to 100 in some cases, organized as numerous repeat motifs. Together with other cytoskeletal components such as microtubules, MAPs, actin and plectin-like linking molecules, they make up a dynamic lattice that sustains neuronal function from neuronal “birthday” to apoptotic cell death. The activity of the neuronal cytoskeleton is regulated by phosphorylation, dephosphorylation reactions mediated by numerous associated kinases, phosphatases and their regulators. Factors regulating multisite phosphorylation of NFs are topographically localized, with maximum phosphorylation of NF proteins consigned to axons. Phosphorylation defines the nature of NF interactions with one another and with other cytoskeletal components such as microtubules, MAPs and actin. To understand how these functional interactions are regulated by phosphorylation we attempt to identify the relevant kinases and phosphatases, their specific targets and the factors modulating their activity. As an initial working model we propose that NF phosphorylation is regulated topographically in neurons by compartment-specific macromolecular complexes of substrates, kinases and phosphatases. This implies that axonal complexes differ structurally and functionally from those in cell bodies and dendrites. Such protein assemblies, by virtue of conformational changes within proteins, facilitate ordered, sequential multisite phosphorylations that modulate dynamic cytoskeletal interactions.  相似文献   

10.
A historical account of the discovery of reversible protein phosphorylation is presented. This process was uncovered in the mid 1950s in a study undertaken with Edwin G. Krebs to elucidate the complex hormonal regulation of skeletal muscle glycogen phosphorylase. Contrary to the known activation of this enzyme by AMP which serves as an allosteric effector, its hormonal regulation results from a phosphorylation of the protein by phosphorylase kinase following the activation of the latter by Ca2+ and ATP. The study led to the establishment of the first hormonal cascade of successive enzymatic reactions, kinases acting on kinases, initiated by cAMP discovered by Earl Sutherland. It also showed how two different physiological processes, carbohydrate metabolism and muscle contraction, could be regulated in concert.  相似文献   

11.
The rapid phase of fructose-1,6-bisphosphatase (FBPase) inactivation following glucose addition to starved yeast cells [reported previously] is inhibited on addition of 10 mM chloroquine (CQ) at about pH 8. This inhibition of inactivation was shown to be due to the prevention of phosphorylation of the enzyme. CQ was also found to inhibit general protein phosphorylation in the yeast cells. Glycolysis, as observed by changes in intracellular glucose-6-phosphate and extracellular glucose and ethanol concentrations, was shown to be significantly inhibited in cells treated with CQ. Similarly, a decrease in ATP concentrations was observed. However, during the early stages of phosphorylation of FBPase, levels of ATP were similar in cells containing CQ as in those without CQ. Thus, decrease in ATP levels is not thought to be significantly responsible for the inhibition of protein phosphorylation. However, the phosphorylating activity of cyclic AMP-dependent protein kinases is inhibited in vitro by relatively low concentrations of CQ. Thus, prevention of protein phosphorylation by CQ is believed to be due to inhibition of protein kinases in yeast cells.Abbreviations FBPase fructose-1,6-bisphosphatase - CQ chloroquine - SDS sodium dodecyl sulfate - G6P glucose-6-phosphate - TCA trichloroacetic acid  相似文献   

12.
以小黑杨磷酸化蛋白质组为研究对象,用人工神经网络表达丝氨酸、苏氨酸等残基位点的磷酸化与氨基酸序列的结构特征之间的非线性关系,建立了BP人工神经网络模型,并用磷酸化数据对所建模型进行训练和分析,得适宜的结构为21×16∶8∶4,拟合准确度为90%,Acc、Sn、Sp、MCC分别为78%、89%、67%、0.57,对比分析结果表明,所建模型具有较强的预测能力。  相似文献   

13.
Mechanisms of specificity in protein phosphorylation   总被引:4,自引:0,他引:4  
A typical protein kinase must recognize between one and a few hundred bona fide phosphorylation sites in a background of approximately 700,000 potentially phosphorylatable residues. Multiple mechanisms have evolved that contribute to this exquisite specificity, including the structure of the catalytic site, local and distal interactions between the kinase and substrate, the formation of complexes with scaffolding and adaptor proteins that spatially regulate the kinase, systems-level competition between substrates, and error-correction mechanisms. The responsibility for the recognition of substrates by protein kinases appears to be distributed among a large number of independent, imperfect specificity mechanisms.  相似文献   

14.
The quantitative analysis of signaling networks requires highly sensitive methods for the time-resolved determination of protein phosphorylation. For this reason, we developed a quantitative protein microarray that monitors the activation of multiple signaling pathways in parallel, and at high temporal resolution. A label-free sandwich approach was combined with near infrared detection, thus permitting the accurate quantification of low-level phosphoproteins in limited biological samples corresponding to less than 50,000 cells, and with a very low standard deviation of approximately 5%. The identification of suitable antibody pairs was facilitated by determining their accuracy and dynamic range using our customized software package Quantpro. Thus, we are providing an important tool to generate quantitative data for systems biology approaches, and to drive innovative diagnostic applications.  相似文献   

15.
Our study identifies tyrosine phosphorylation as a novel protein kinase Cdelta (PKCdelta) activation mechanism that modifies PKCdelta-dependent phosphorylation of cardiac troponin I (cTnI), a myofilament regulatory protein. PKCdelta phosphorylates cTnI at Ser23/Ser24 when activated by lipid cofactors; Src phosphorylates PKCdelta at Tyr311 and Tyr332 leading to enhanced PKCdelta autophosphorylation at Thr505 (its activation loop) and PKCdelta-dependent cTnI phosphorylation at both Ser23/Ser24 and Thr144. The Src-dependent acquisition of cTnI-Thr144 kinase activity is abrogated by Y311F or T505A substitutions. Treatment of detergent-extracted single cardiomyocytes with lipid-activated PKCdelta induces depressed tension at submaximum but not maximum [Ca2+] as expected for cTnI-Ser23/Ser24 phosphorylation. Treatment of myocytes with Src-activated PKCdelta leads to depressed maximum tension and cross-bridge kinetics, attributable to a dominant effect of cTnI-Thr144 phosphorylation. Our data implicate PKCdelta-Tyr311/Thr505 phosphorylation as dynamically regulated modifications that alter PKCdelta enzymology and allow for stimulus-specific control of cardiac mechanics during growth factor stimulation and oxidative stress.  相似文献   

16.
The effects of the nervous system specific protein, S-100, on protein phosphorylation in rat brain is examined. The S-100 protein inhibits the phosphorylation of several soluble brain proteins in a calcium dependent fashion. The most potent effect exhibited by S-100 was on the phosphorylation of a protein having a molecular weight of 73,000. The data suggest that the calcium binding S-100 protein, for which a function has not yet been assigned, may modulate calcium dependent phosphorylation of selected brain proteins.  相似文献   

17.
Multisite and hierarchal protein phosphorylation.   总被引:20,自引:0,他引:20  
Multisite phosphorylation is a prevalent form of protein modification whose full implications are just beginning to be understood. Multiple protein modifications expand the repertoire of structural changes that can be elicited in proteins and permit more intricate regulatory circuits to operate.  相似文献   

18.
Miao P  Ning L  Li X  Li P  Li G 《Bioconjugate chemistry》2012,23(1):141-145
We herein report a novel electrochemical method in this paper to monitor protein phosphorylation and to assay protein kinase activity based on Zr(4+) mediated signal transition and rolling circle amplification (RCA). First, substrate peptide immobilized on a gold electrode can be phosphorylated by protein kinase A. Then, Zr(4+) links phosphorylated peptide and DNA primer probe by interacting with the phosphate groups. After the introduction of the padlock probe and phi29 DNA polymerase, RCA is achieved on the surface of the electrode. As the RCA product, a very long DNA strand, may absorb a large number of electrochemical speices, [Ru(NH(3))(6)](3+), via the electrostatic interaction, localizing them onto the electrode surface, initiated by protein kinase A, a sensitive electrochemical method to assay the enzyme activity is proposed. The detection limit of the method is as low as 0.5 unit/mL, which might promise this method as a good candidate for monitoring phosphorylation in the future.  相似文献   

19.
R Buchta  R Gennaro  M Pontet  M Fridkin  D Romeo 《FEBS letters》1988,237(1-2):173-177
Treatment of human neutrophils with C-reactive protein (CRP) causes a concentration-dependent in the extent of activation of superoxide production and of granule secretion, induced by phorbol-12-myristate-13-acetate (PMA) or N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF). The same treatment also causes a significant reduction in the degree of PMA- and fMLF-stimulated phosphorylation of several cell proteins. These include the proteins of 43-47 kDa, whose extent of phosphorylation correlates with the activation of superoxide production and of secretion. Contrary to the effects exerted on protein phosphorylation, CRP does not affect the fMLF-elicited increase in neutrophil cytosolic Ca2+.  相似文献   

20.
This study was initiated to determine whether opioid peptides exert direct effects on the phosphorylation of specific proteins in membranes from rat neostriatum. It was found that low concentrations of β-endorphin (0.1–10nM) inhibit the phosphorylation of specific proteins designated F and H (M.W. 47,000 and 10–20,000 respectively). In addition, β-endorphin produced an overall stimulation of phosphate incorporation into other membrane proteins, the phosphorylation of which is dependent on calcium ions. The stimulatory effects were blocked by naloxone, but the inhibitory effects were not. The regulation of membrane protein-phosphorylation by endorphins may constitute a biochemical mechanism mediating for some of the physiological affects of these peptides on neuronal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号