首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. Experiments were carried out to decide whether or not the electromotive properties of dried collodion membranes depend upon their thickness. 2. A number of dried collodion membranes of varying thickness, 3–160 µ, were prepared from collodion preparations of different electrochemical activity. The characteristic concentration potentials across them were measured and the means of these values determined for each thickness. 3. The characteristic concentration potentials across dried collodion membranes are a function of their thickness. The thinnest membranes yield in all cases the lowest concentration potentials; increasingly thicker membranes give increasingly higher potential values, until a constant value is reached which is characteristic of the particular collodion preparation used. With electrochemically active collodion, characteristic concentration potentials approaching the thermodynamically possible maximum are obtained with membranes of only 10 µ thickness, thinner membranes giving appreciably lower values. With two rather inactive commercial collodion preparations the characteristic concentration potential increases from about 30 mv. for membranes 3 µ thick to about 42 mv. for 20 µ membranes; still thicker membranes do not show a significant increase in the potential values. With a highly purified collodion preparation the constant maximum value was found to be about 32 mv., 4 µ thick membranes giving only about 22 mv. 4. These results do not support the homogeneous phase theory as applied to the dried collodion membrane. They are readily compatible with the micellar-structural theory. Several special possible cases of the latter as applied to the dried collodion membrane are discussed.  相似文献   

2.
The magnitude of the dipole potential of lipid membranes is often estimated from the difference in conductance between the hydrophobic ions, tetraphenylborate, and tetraphenylarsonium or tetraphenylphosphonium. The calculation is based on the tetraphenylarsonium-tetraphenylborate hypothesis that the magnitude of the hydration energies of the anions and cations are equal (i.e., charge independent), so that their different rates of transport across the membrane are solely due to differential interactions with the membrane phase. Here we investigate the validity of this assumption by quantum mechanical calculations of the hydration energies. Tetraphenylborate (Delta G(hydr) = -168 kJ mol(-1)) was found to have a significantly stronger interaction with water than either tetraphenylarsonium (Delta G(hydr) = -145 kJ mol(-1)) or tetraphenylphosphonium (Delta G(hydr) = -157 kJ mol(-1)). Taking these differences into account, literature conductance data were recalculated to yield values of the dipole potential 57 to 119 mV more positive in the membrane interior than previous estimates. This may partly account for the discrepancy of at least 100 mV generally observed between dipole potential values calculated from lipid monolayers and those determined on bilayers.  相似文献   

3.
1. It is shown that collodion membranes which have received one treatment with a 1 per cent gelatin solution show for a long time (if not permanently) afterwards a different osmotic behavior from collodion membranes not treated with gelatin. This difference shows itself only towards solutions of those electrolytes which have a tendency to induce a negative electrification of the water particles diffusing through the membrane, namely solutions of acids, acid salts, and of salts with trivalent and tetravalent cations; while the osmotic behavior of the two types of membranes towards solutions of salts and alkalies, which induce a positive electrification of the water particles diffusing through the membrane, is the same. 2. When we separate solutions of salts with trivalent cation, e.g. LaCl3 or AlCl3, from pure water by a collodion membrane treated with gelatin, water diffuses rapidly into the solution; while no water diffuses into the solution when the collodion membrane has received no gelatin treatment. 3. When we separate solutions of acid from pure water by a membrane previously treated with gelatin, negative osmosis occurs; i.e., practically no water can diffuse into the solution, while the molecules of solution and some water diffuse out. When we separate solutions of acid from pure water by collodion membranes not treated with gelatin, positive osmosis will occur; i.e., water will diffuse rapidly into the solution and the more rapidly the higher the valency of the anion. 4. These differences occur only in that range of concentrations of electrolytes inside of which the forces determining the rate of diffusion of water through the membrane are predominantly electrical; i.e., in concentrations from 0 to about M/16. For higher concentrations of the same electrolytes, where the forces determining the rate of diffusion are molecular, the osmotic behavior of the two types of membranes is essentially the same. 5. The differences in the osmotic behavior of the two types of membranes are not due to differences in the permeability of the membranes for solutes since it is shown that acids diffuse with the same rate through both kinds of membranes. 6. It is shown that the differences in the osmotic behavior of the two types of collodion membranes towards solutions of acids and of salts with trivalent cation are due to the fact that in the presence of these electrolytes water diffuses in the form of negatively charged particles through the membranes previously treated with gelatin, and in the form of positively charged particles through collodion membranes not treated with gelatin. 7. A treatment of the collodion membranes with casein, egg albumin, blood albumin, or edestin affects the behavior of the membrane towards salts with trivalent or tetravalent cations and towards acids in the same way as does a treatment with gelatin; while a treatment of the membranes with peptone prepared from egg albumin, with alanine, or with starch has no such effect.  相似文献   

4.
Lipid-impregnated collodion (nitrocellulose) films have been frequently used as a fusion substrate in the measurement and analysis of electrogenic activity in biological membranes and proteoliposomes. While the method of fusion of biological membranes or proteoliposomes with such films has found a wide application, little is known about the structures formed after the fusion. Yet, knowledge of this structure is important for the interpretation of the measured electric potential. To characterize structures formed after fusion of membrane vesicles (chromatophores) from the purple bacterium Rhodobacter sphaeroides with lipid-impregnated collodion films, we used near-field scanning optical microscopy. It is shown here that structures formed from chromatophores on the collodion film can be distinguished from the lipid-impregnated background by measuring the fluorescence originating either from endogenous fluorophores of the chromatophores or from fluorescent dyes trapped inside the chromatophores. The structures formed after fusion of chromatophores to the collodion film look like isolated (or sometimes aggregated, depending on the conditions) blisters, with diameters ranging from 0.3 to 10 microm (average approximately 1 microm) and heights from 0.01 to 1 microm (average approximately 0.03 microm). These large sizes indicate that the blisters are formed by the fusion of many chromatophores. Results with dyes trapped inside chromatophores reveal that chromatophores fused with lipid-impregnated films retain a distinct internal water phase.  相似文献   

5.
The permeability of tritiated water (THO) across simple and layer-type composite membranes of collodion containing different amounts of polystyrenesulfonic acid has been measured and corrected for the effects of aqueous stationary layers present at the membrane-solution interfaces. It was found that the water permeabilities in the two opposite directions across the composite membranes were different, whereas they were the same across simple membranes. The theoretical permeability value for the composite membrane (formed by putting one simple membrane on top of another simple membrane of increasing charge density and gently pressing them together), calculated from the values due to simple membranes, was found to be always greater than the two measured values. It was shown that the aqueous layers trapped between membranes were not responsible for the low measured values. The factor causing this was ascribed to the mechanism which produced rectification of water flow in the composite membranes. Establishment of the THO concentration profile in the layered membranes showed that accumulation and depletion of THO in the membrane phase when the THO was flowing from the high charge density side to the low charge density side and vice versa, respectively, were responsible for the unequal flows observed across the composite membrane in the two directions.  相似文献   

6.
Hydrogenase and fumarate reductase isolated from Wolinella succinogenes were incorporated into liposomes containing menaquinone. The two enzymes were found to be oriented solely to the outside of the resulting proteoliposomes. The proteoliposomes catalyzed fumarate reduction by H2 which generated an electrical proton potential (Delta(psi) = 0.19 V, negative inside) in the same direction as that generated by fumarate respiration in cells of W. succinogenes. The H+/e ratio brought about by fumarate reduction with H2 in proteoliposomes in the presence of valinomycin and external K+ was approximately 1. The same Delta(psi) and H+/e ratio was associated with the reduction of 2,3-dimethyl-1,4-naphthoquinone (DMN) by H2 in proteoliposomes containing menaquinone and hydrogenase with or without fumarate reductase. Proteoliposomes containing menaquinone and fumarate reductase with or without hydrogenase catalyzed fumarate reduction by DMNH2 which did not generate a Delta(psi). Incorporation of formate dehydrogenase together with fumarate reductase and menaquinone resulted in proteoliposomes catalyzing the reduction of fumarate or DMN by formate. Both reactions generated a Delta(psi) of 0.13 V (negative inside). The H+/e ratio of formate oxidation by menaquinone or DMN was close to 1. The results demonstrate for the first time that coupled fumarate respiration can be restored in liposomes using the well characterized electron transport enzymes isolated from W. succinogenes. The results support the view that Delta(psi) generation is coupled to menaquinone reduction by H2 or formate, but not to menaquinol oxidation by fumarate. Delta(psi) generation is probably caused by proton uptake from the cytoplasmic side of the membrane during menaquinone reduction, and by the coupled release of protons from H2 or formate oxidation on the periplasmic side. This mechanism is supported by the properties of two hydrogenase mutants of W. succinogenes which indicate that the site of quinone reduction is close to the cytoplasmic surface of the membrane.  相似文献   

7.
Enthalpy changes in the formation of a proton electrochemical potential (Delta mu H+) and its components, DeltapH (proton gradient) and Deltapsi (electrical potential), across two types of E. coli membrane vesicles were investigated. Flow dialysis experiments showed that in 0.1 M KPi, pH 6.6, E. coli GR19N membrane vesicles coupled with d-lactate exhibited 57 mV for DeltapH, 70 mV for Deltapsi, and 127 mV for Delta mu H+. Microcalorimetric measurements revealed that the corresponding enthalpy changes (DeltaH(pH), DeltaH(psi) and DeltaHm) were 3.5, 3.3 and 6.9 kcal/mole, respectively. Moreover, in E. coli ML 308-225 membrane vesicles across which 120mV of Delta mu H+ was generated, values of DeltaH(pH) and DeltaH(psi) were determined as 7.0 and 6.6 kcal/mole, as compared with the previously reported 14.1 kcal/mole for DeltaH(m). Comparisons of these enthalpy data revealed that component enthalpies (DeltaH(pH) and DeltaH(psi)) essentially added up to the total enthalpy (DeltaHm), providing a self-consistent test for the obtained data. In both membranes, the ratio ofDeltaH(psi) to Deltapsi was comparable to that of DeltaH(pH) to DeltapH in the formation of Delta mu H+. These observations indicated that the process of the movement of H+ across the membranes was the major contributor to the observed energetic changes. Moreover, the enthalpy change in the formation of Delta mu H+ was compared with the membranes derived from GR19N and ML 308-225 and coupled with NADH and d-lactate. The results were discussed in terms of trans-membrane phenomena.  相似文献   

8.
The ability to move water across lipid membranes is crucial for nutrient intake, energy generation, waste excretion, and a myriad of other functions associated with life. Aquaporins, a family of integral membrane proteins, are now recognized as the channels responsible for transporting hydrophilic molecules, including water, across relatively impervious, hydrophobic cell membranes. A tremendous amount of work has been published on characterizing these proteins, which have been found in all bacteria, yeast, plants, and animals examined to date. In addition, an increasing number of mouse models with genetically altered aquaporin expression are being reported. This article will briefly review the basic biochemistry of aquaporins and then evaluate the use (and misuse) of mice in the quest for understanding the comparative pathophysiology of aquaporins in humans.  相似文献   

9.
R Wagner  E C Apley    W Hanke 《The EMBO journal》1989,8(10):2827-2834
The purified chloroplast ATP synthase (CF(0)-CF(1)) was reconstituted into azolectin liposomes from which bilayer membranes on the tip of a glass pipette ('dip stick technique')and planar bilayer membranes were form ed. The CF(0)-CF(1) facilitated ion conductance through the bilayer membranes. Our results clearly indicated that the observed single channel currents were carried by H+ through the isolated and reconstituted chloroplast ATPase. We demonstrated that in proteoliposomes it is the whole enzyme complex CF(0)-CF(1) and not the membrane sector CF(0) alone that constitutes a voltagegated, proton-selective channel with a high conductance of 1-5 pS at pH 5.5-8.0. After removal of CF(1) from the liposomes by NaBr treatment the membrane sector CF(0) displayed various kinds of channels also permeable to monovalent cations. The open probability P(0) of the CF(0)-CF(1) channel increased considerable with increasing membrane voltage [from P(0) less than or equal to 1% (V(m) less than or equal to 120 mV) to P(0) less than or equal to 30% (120 mV less than or equal to Vm 200 mV)]. In the presence of ADP (3 microM) and P(i) (5 microM), which specifically bind to CF(1), the open probability decreased and venturicidin (1 microM), a specific inhibitor of H+ flow through CF(0) in thylakoid membranes, blocked the channel almost completely. Our results, which reveal a high channel unit conductance, and at membrane voltages less than 100 mV low open probability with concomitant mean open times in the micros timescale (less than 100 micros) for the energy coupling in the enzyme complex. At physiological membrane voltages for photophosphorylation (about 30 mV) the enzyme complex would then display a time-averaged conductance of about 1 fS.  相似文献   

10.
The two-step crystallization of water in multilamellar vesicles (MLVs) of phosphatidylcholines has been investigated. The main crystallization occurs near -15 degrees C and involves bulk water. Contrary to unilamellar vesicles, a sub-zero phase transition is observed for MLVs at -40 degrees C that corresponds to the crystallization of interstitial water, as proved by Fourier transform infrared absorption and differential scanning calorimetry (DSC) experiments. Furthermore, by means of the DSC method and, more specifically, using the enthalpy change values Delta H(sub) at the sub-zero transition, the number of water molecules per 1,2-dipalmitoylphosphatidylcholine (DPPC) molecule giving rise to this transition has been estimated for different H(2)O/DPPC molar ratios. The curve of the molecular fraction of water molecules involved in the sub-zero transition versus the H(2)O/DPPC molar ratio exhibits a maximum for H(2)O/DPPC equal to 27 (40% in mass of water) and tends towards zero for H(2)O/DPPC ratio values approaching that of the swelling limit of the membrane. A smaller enthalpy value of the sub-zero transition is found for 1-oleoyl-2-palmitoyl-3-phosphatidylcholine (OPPC) than for DPPC. This may be explained by the decrease of interstitial water's quantity when the lipid contains an unsaturated chain. When troxerutin, a hydrophilic drug, is added to the DPPC multilayers, the decrease of Delta H(sub) and melting enthalpy of bulk water is attributed to a decrease of the entropy of the liquid phase owing to the network of water molecules surrounding troxerutin molecules. In all cases, the experiments revealed that the sub-zero transition occurs only in the presence of excess water with respect to the swelling limit of membranes. This evidence could be, at least qualitatively, related to an increase of membrane pressure on interstitial water subsequent to bulk water crystallization.  相似文献   

11.
1. Dried collodion membranes are known to swell in water and to the same limited extent also in solutions of strong inorganic electrolytes (Carr and Sollner). The present investigation shows that in solutions of organic electrolytes and non-electrolytes, the swelling of dried collodion membranes is not as uniform, but depends on the nature of the solute. 2. The solutions of typically "hydrophilic" substances, e.g., glycerine, glucose, and citric acid, swell collodion membranes only to the same extent as water and solutions of strong electrolytes. In solutions of typically carbophilic substances (e.g., butyric acid, valeric acid, isobutyl alcohol, valeramide, phenol, and m-nitrophenol) the swelling of the membranes is much stronger than in water, according to the concentration used. For the brand of collodion used the swelling in 0.5 M solution was in some cases as high as 26 per cent of the original volume, as compared to 6 to 7 per cent in water. Therefore, in these solutions the "water-wetted dried" collodion membrane is not rigid, inert, and non-swelling, but behaves as a swelling membrane. 3. The solutes which cause an increased swelling of the membranes are accumulated in the latter, the degree of accumulation being markedly parallel with the degree of their specific swelling action. 4. The anomalously high permeabilities of certain carbophilic organic solutes reported by Michaelis, Collander, and Höber find an explanation in the specific interaction of these substances with collodion. 5. The use of the collodion membrane as a model of the ideal porous membrane is restricted to those instances in which no specific interaction occurs between the solute and the collodion.  相似文献   

12.
The transfer of protons in membrane proteins is an essential phenomenon in biology. However, the basic rules by which H(+) transfer occurs in water wires inside proteins are not well characterized. In particular, the effects of specific atoms and small groups of atoms on the rate of H(+) transfer in water wires are not known. In this study, new covalently linked gramicidin-A (gA) peptides were synthesized, and the effects of specific atoms and peptide constraints on the rate of H(+) transfer were measured in single molecules. The N-termini of two gA peptides were linked to various molecules: S,S-cyclopentane diacid, R,R-cyclopentane diacid, and succinic acid. Single-channel proton conductances (g(H)) were measured at various proton concentrations ([H(+)]) and compared to previous measurements obtained in the S,S- and R,R-dioxolane-linked as well as in native gA channels. Replacing the S,S-dioxolane by an S,S-cyclopentane had no effects on the g(H)-[H(+)] relationships, suggesting that the constrained and continuous transition between the two gA peptides via these S,S linkers is ultimately responsible for the two- to fourfold increase in g(H) relative to native gA channels. It is likely that constraining a continuous transition between the two gA peptides enhances the rate of H(+) transfer in water wires by decreasing the number of water wire configurations that do not transfer H(+) at higher rates as in native gA channels (a decrease in the activation entropy of the system). On the other hand, g(H) values in the R,R-cyclopentane are considerably larger than those in R,R-dioxolane-linked gA channels. One explanation would be that the electrostatic interactions between the oxygens in the dioxolane and adjacent carbonyls in the R,R-dioxolane-linked gA channel attenuate the rate of H(+) transfer in the middle of the pore. Interestingly, g(H)-[H(+)] relationships in the R,R-cyclopentane-linked gA channel are quite similar to those in native gA channels. g(H) values in succinyl-linked gA channels display a wide distribution of values that is well represented by a bigaussian. The larger peaks of these distributions are similar to g(H) values measured in native gA channel. This observation is also consistent with the notion that constraining the transition between the two beta-helical gA peptides enhances the rate of H(+) transfer in water wires by decreasing the activation entropy of the system.  相似文献   

13.
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.  相似文献   

14.
Prudent S  Marty F  Charbonnier M 《FEBS letters》2005,579(18):3872-3880
Osmoregulation plays an important role in cellular responses to osmotic stress in plants and in yeast. Aquaporins contribute to osmotic adjustment by facilitating transport of water or solutes across membranes. The tonoplastic water channel BobTIP1;1 (original name BobTIP26-1) genes are upregulated during dessication stress in cauliflower meristematic tissue. To investigate the physiological importance of BobTIP1;1, we expressed it in a Saccharomyces cerevisiae osmosensitive mutant fps1Delta. We showed that the defect in the yeast glycerol plasma membrane transporter is complemented by a plant cDNA encoding the aquaporin BobTIP1;1 which is localized in the vacuolar membrane of the complemented yeast cells. To our knowledge, this is the first example of a plant aquaporin for which localization in the vacuolar membrane of yeast cells is related to an osmoresistant phenotype under hypo-osmotic shock.  相似文献   

15.
The MIP (major intrinsic protein) proteins constitute a channel family of currently 150 members that have been identified in cell membranes of organisms ranging from bacteria to man. Among these proteins, two functionally distinct subgroups are characterized: aquaporins that allow specific water transfer and glycerol channels that are involved in glycerol and small neutral solutes transport. Since the flow of small molecules across cell membranes is vital for every living organism, the study of such proteins is of particular interest. For instance, aquaporins located in kidney cell membranes are responsible for reabsorption of 150 liters of water/day in adult human. To understand the molecular mechanisms of solute transport specificity, we analyzed mutant aquaporins in which highly conserved residues have been substituted by amino acids located at the same positions in glycerol channels. Here, we show that substitution of a tyrosine and a tryptophan by a proline and a leucine, respectively, in the sixth transmembrane helix of an aquaporin leads to a switch in the selectivity of the channel, from water to glycerol.  相似文献   

16.
The competition of ion and water fluxes across gramicidin channels was assessed from the concentration distributions of both pore-impermeable and -permeable cations that were simultaneously measured by double-barreled microelectrodes in the immediate vicinity of a planar bilayer. Because water movement across the membrane led to accumulation of solutes on one side of the membrane and depletion on the other, the permeable cation was not only pushed by water across the channel (true solvent drag); it also flowed along its concentration gradient (pseudo-solvent drag). For the demonstration of true solvent drag, a difference between the bulk concentrations on the hypertonic and the hypotonic sides of the membrane was established. It was adjusted to get equal cation concentrations at both membrane/water interfaces. From the sodium and potassium fluxes measured along with membrane conductivity under these conditions, approximately five water molecules were found to be transported simultaneously with one ion through the channel. In diphytanoyl phosphatidylcholine membranes, a single-channel hydraulic permeability coefficient of 1.6 x 10(-14) cm(3) s(-1) was obtained.  相似文献   

17.
The rate of penetration and the solubility of H, O, N, NH3, H2O, HCl gas, CO2, formic, acetic, chloracetic, dichloracetic acid, glycerol, phenol and mercury bichloride in dry collodion membranes have been measured. The rate of penetration of H and CO2 is the same whether the membrane and gas are dry or whether the membrane is immersed in water. The solubility of CO2, acetic acid, phenol and water in collodion is completely reversible and is proportional to the concentration (or vapor pressure) in low concentrations and independent of the surface of the collodion. The size of the pores has been calculated from the vapor pressure of water in the collodion and from the rate of flow of water through the membrane. The results do not agree and are not consistent with the observed rates of penetration. The relative rates of penetration of the gases bear no relation to the density of the gas. When the results are corrected for the solubility of the substances in the collodion and expressed as the diffusion coefficient in collodion they show that the diffusion coefficient increases rapidly as the molecular weight decreases.  相似文献   

18.
Bloss T  Clemens S  Nies DH 《Planta》2002,214(5):783-791
The ZAT1p zinc transporter from Arabidopsis thaliana (L.) Heynh. is a member of the cation diffusion facilitator (CDF) protein family. When heterologously expressed in Escherichia coli, ZAT1p bound zinc in a metal blot. Binding of zinc occurred mainly to the hydrophilic amino acid region from H182 to H232. A ZAT1p/ZAT1p*Delta(M1-I25) protein mixture was purified and reconstituted into proteoliposomes. Uptake of zinc into the proteoliposomes did not require a proton gradient across the liposomal membrane. ZAT1p did not transport cobalt, and transported cadmium at only 1% of the zinc transport rate. ZAT1p functioned as an uptake system for 65Zn2+ in two strains of the Gram-negative bacterium Ralstonia metallidurans, which were different in their content of zinc-efflux systems. The ZAT1 gene did not rescue increased zinc sensitivity of a Delta ZRC1single-mutant strain or of a Delta ZRC1 Delta COT1 double-mutant strain of Saccharomyces cerevisiae, but ZAT1 complemented this phenotype in a Delta SpZRC1 mutant strain of Schizosaccharomyces pombe.  相似文献   

19.
水孔蛋白在细胞延长、盐胁迫和光合作用中的作用   总被引:4,自引:0,他引:4  
水孔蛋白属于一个高度保守的、能够进行跨生物膜水分运输的通道蛋白MIP家族。水孔蛋白作为膜水通道,在控制细胞和组织的水含量中扮演重要角色。本研究的重点是属于PIP亚家族的GhPIP1;2和属于TIP亚家族的γTIP1在植物细胞延长中的作用。使用特异基因探针的Northern杂交和实时荧光PCR技术证明GhPIP1;2和GhγTIP1主要在棉花纤维延长过程中显著表达,且最高表达量在开花后5d。在细胞延长过程中,GhPIP1;2和GhγTIP1表达显著,表明它们在促使水流迅速进入液泡这一过程中扮演重要角色。而且也研究了盐胁迫植物中钙离子对水孔蛋白的影响。分别或一起用NaCl或CaCl2处理原生质体或细胞质膜。结果发现在盐胁迫条件下,水渗透率值在原生质体和质膜颗粒中都下降了,同时PIP1水孔蛋白的含量也下降了,表明NaCl对水孔蛋白的功能和含量有抑制作用。同时也观察了Ca2+的两种不同的作用。感知胁迫的胞质中游离钙离子浓度的增加可能导致水孔蛋白的关闭。而过剩的钙离子将导致水孔蛋白的上游调控。同时实验已经证明大麦的一类水孔蛋白-HvPIP2;1有更高的水和CO2转移率。本研究的目标是确定负责转运水和CO2的关键水孔蛋白...  相似文献   

20.
Role of the Plasma Membrane H+-ATPase in K+ Transport   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of the plant plasma membrane H+-ATPase in K+ uptake was examined using red beet (Beta vulgaris L.) plasma membrane vesicles and a partially purified preparation of the red beet plasma membrane H+-ATPase reconstituted in proteoliposomes and planar bilayers. For plasma membrane vesicles, ATP-dependent K+ efflux was only partially inhibited by 100 [mu]M vanadate or 10 [mu]M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. However, full inhibition of ATP-dependent K+ efflux by these reagents occurred when the red beet plasma membrane H+-ATPase was partially purified and reconstituted in proteoliposomes. When reconstituted in a planar bilayer membrane, the current/voltage relationship for the plasma membrane H+-ATPase showed little effect of K+ gradients imposed across the bilayer membrane. When taken together, the results of this study demonstrate that the plant plasma membrane H+-ATPase does not mediate direct K+ transport chemically linked to ATP hydrolysis. Rather, this enzyme provides a driving force for cellular K+ uptake by secondary mechanisms, such as K+ channels or H+/K+ symporters. Although the presence of a small, protonophore-insensitive component of ATP-dependent K+ transport in a plasma membrane fraction might be mediated by an ATP-activated K+ channel, the possibility of direct K+ transport by other ATPases (i.e. K+-ATPases) associated with either the plasma membrane or other cellular membranes cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号