首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional TROSY-based SIM-(13)C(m)-(1)H(m)/(1)H-(15)N NMR experiment for simultaneous measurements of methyl (1) D (CH) and backbone amide (1) D (NH) residual dipolar couplings (RDC) in {U-[(15)N,(2)H]; Ileδ1-[(13)CH(3)]; Leu,Val-[(13)CH(3)/(12)CD(3)]}-labeled samples of large proteins is described. Significant variation in the alignment tensor of the 82-kDa enzyme Malate synthase G is observed as a function of only slight changes in experimental conditions. The SIM-(13)C(m)-(1)H(m)/(1)H-(15)N data sets provide convenient means of establishing the alignment tensor characteristics via the measurement of (1) D (NH) RDCs in the same protein sample.  相似文献   

2.
Main-chain (1)H(N)-(15)N residual dipolar couplings (RDCs) ranging from approximately -200 to 200?Hz have been measured for ubiquitin under strong alignment conditions in Pf1 phage. This represents a ten-fold increase in the degree of alignment over the typical weakly aligned samples. The measurements are made possible by extensive proton-dilution of the sample, achieved by deuteration of the protein with partial back-substitution of labile protons from 25?% H(2)O / 75?% D(2)O buffer. The spectral quality is further improved by application of deuterium decoupling. Since standard experiments using fixed-delay INEPT elements cannot accommodate a broad range of couplings, the measurements were conducted using J-resolved and J-modulated versions of the HSQC and TROSY sequences. Due to unusually large variations in dipolar couplings, the trosy (sharp) and anti-trosy (broad) signals are often found to be interchanged in the TROSY spectra. To distinguish between the two, we have relied on their respective (15)N linewidths. This strategy ultimately allowed us to determine the signs of RDCs. The fitting of the measured RDC values to the crystallographic coordinates of ubiquitin yields the quality factor Q?=?0.16, which confirms the perturbation-free character of the Pf1 alignment. Our results demonstrate that RDC data can be successfully acquired not only in dilute liquid crystals, but also in more concentrated ones. As a general rule, the increase in liquid crystal concentration improves the stability of alignment media and makes them more tolerant to variations in sample conditions. The technical ability to measure RDCs under moderately strong alignment conditions may open the door for development of alternative alignment media, including new types of media that mimic biologically relevant systems.  相似文献   

3.
A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the 2H NMR water signal and by the measurement of 1H-15N residual dipolar couplings (RDC) in the archeal translation elongation factor 1. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample.  相似文献   

4.
5.
Several NMR works have shown that long-range information provided by residual dipolar couplings (RDCs) significantly improve the global structure definition of RNAs and DNAs. Most of these are based on the use of a large set of RDCs, the collect of which requires samples labeled with 13C, 15N, and sometimes, 2H. Here, we carried out torsion-angle dynamics simulations on a non-self complementary DNA fragment of 17 base-pairs, d(GGAAAATATCTAGCAGT).(ACTGCTAGAGATTTTCC). This reproduces the U5 LTR distal end of the HIV-1 cDNA that contains the enzyme integrase binding site. Simulations aimed at evaluating the impact of RDCs on the structure definition of long oligonucleotides, were performed in incorporating (i) nOe-distances at both < 4.5 Å and < 5 Å; (ii) a small set of 13C-1H RDCs, easily detectable at the natural abundance, and (iii) a larger set of RDCs only accessible through the 13C labeling of DNAs. Agreement between a target structure and a simulated structure was measured in terms of precision and accuracy. Results allowed to define conditions in which accurate DNA structures can be determined. We confirmed the strong impact of RDCs on the structure determination, and, above all, we found that a small set of RDC constraints (ca. 50) detectable at the natural abundance is sufficient to accurately derive the global and local DNA duplex structures when used in conjunction with nOe-distances < 5 Å.  相似文献   

6.
The straightforward interpretation of solution state residual dipolar couplings (RDCs) in terms of internuclear vector orientations generally requires prior knowledge of the alignment tensor, which in turn is normally estimated using a structural model. We have developed a protocol which allows the requirement for prior structural knowledge to be dispensed with as long as RDC measurements can be made in three independent alignment media. This approach, called Rigid Structure from Dipolar Couplings (RSDC), allows vector orientations and alignment tensors to be determined de novo from just three independent sets of RDCs. It is shown that complications arising from the existence of multiple solutions can be overcome by careful consideration of alignment tensor magnitudes in addition to the agreement between measured and calculated RDCs. Extensive simulations as well applications to the proteins ubiquitin and Staphylococcal protein GB1 demonstrate that this method can provide robust determinations of alignment tensors and amide N-H bond orientations often with better than 10 degrees accuracy, even in the presence of modest levels of internal dynamics.  相似文献   

7.
Residual dipolar couplings (RDCs) were used as restraints in fully solvated molecular dynamics simulations of reduced substrate- and carbonmonoxy-bound cytochrome P450(cam) (CYP101A1), a 414-residue soluble monomeric heme-containing camphor monooxygenase from the soil bacterium Pseudomonas putida. The (1)D(NH) residual dipolar couplings used as restraints were measured in two independent alignment media. A soft annealing protocol was used to heat the starting structures while incorporating the RDC restraints. After production dynamics, structures with the lowest total violation energies for RDC restraints were extracted to identify ensembles of conformers accessible to the enzyme in solution. The simulations result in substrate orientations different from that seen in crystallographic structures and a more open and accessible enzyme active site and largely support previously reported differences between the open and closed states of CYP101A1.  相似文献   

8.
Recently we reported that the alignment tensor of a biological macromolecule, which was dissolved in a dilute suspension of highly negatively charged filamentous phage at close to neutral pH, can be predicted from the molecule’s 3D charge distribution and shape (Zweckstetter et al. 2004). Here it is demonstrated that this approach is also applicable to alignment of proteins in liquid crystalline phases formed by filamentous phage at low pH. Residual dipolar couplings (RDCs) predicted by our simple electrostatic model for the B1 domain of protein G in fd phage at pH 3 fit very well with the experimental values. The sign of charge–shape predicted one-bond 1H–15N dipolar couplings for the B1 domain of protein G (GB1) was inverted at pH 3 compared to neutral pH, in agreement with experimental observations. Our predictions indicate that this is a feature specific for GB1. In addition, it is shown that RDCs induced in the protein ubiquitin by the presence of a positively charged surfactant system comprising cetylpyridinium bromide/hexanol/sodium bromide can be predicted accurately by a simple electrostatic alignment model. This shows that steric and electrostatic interactions dominate weak alignment of biomolecules for a wide range of pH values both in filamentous phage and in surfactant liquid crystalline phases.  相似文献   

9.
The ligand-binding properties of a 53 kDa homomultimeric trimer from mannose-binding protein (MBP) have been investigated using residual dipolar couplings (RDCs) that are easily measured from NMR spectra of the ligand and isotopically labeled protein. Using a limited set of 1H-15N backbone amide NMR assignments for MBP and orientational information derived from the RDC measurements in aligned media, an order tensor for MBP has been determined that is consistent with symmetry-based predictions of an axially symmetric system. 13C-1H couplings for a bound trisaccharide ligand, methyl 3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside (trimannoside) have been determined at natural abundance and used as orientational constraints. The bound ligand geometry and orientational constraints allowed docking of the trimannoside ligand in the binding site of MBP to produce a structural model for MBP-oligosaccharide interactions.  相似文献   

10.
Triple resonance E.COSY-based techniques were used to measure intra-residue and sequential H(N)-H(alpha) residual dipolar couplings (RDCs) for the third IgG-binding domain of protein G (GB3), aligned in Pf1 medium. Measurements closely correlate with values predicted on the basis of an NMR structure, previously determined on the basis of a large number of one-bond backbone RDCs measured in five alignment media. However, in particular the sequential H(N)-H(alpha) RDCs are smaller than predicted for a static structure, suggesting a degree of motion for these internuclear vectors that exceeds that of the backbone amide N-H vectors. Of all experimentally determined GB3 structures available, the best correlation between experimental (1)H-(1)H couplings is observed for a GB3 ensemble, previously derived to generate a realistic picture of the conformational space sampled by GB3 (Clore and Schwieters, J Mol Biol 355:879-886, 2006). However, for both NMR and X-ray-derived structures the (1)H-(1)H couplings are found to be systematically smaller than expected on the basis of alignment tensors derived from (15)N-(1)H amide RDCs, assuming librationally corrected N-H bond lengths of 1.041 A.  相似文献   

11.
Residual dipolar couplings (RDC), measured by dissolving proteins in dilute liquid crystal media, or by studying naturally paramagnetic molecules, have rapidly become established as routine measurements in the investigation of the structure of macromolecules by NMR. One of the most obvious applications of the previously inaccessible long-range angular information afforded by RDC is the accurate definition of domain orientation in multi-module macromolecules or complexes. In this paper we describe a novel program developed to allow the determination of alignment tensor parameters for individual or multiple domains in macromolecules from residual dipolar couplings and to facilitate their manipulation to construct low-resolution models of macromolecular structure. For multi-domain systems the program determines the relative orientation of individual structured domains, and provides graphical user-driven rigid-body modeling of the different modules relative to the common tensorial frame. Translational freedom in the common frame, and equivalent rotations about the diagonalized (x,y,z) axes are used to position the different modules in the common frame to find a model in best agreement with experimentally measured couplings alone or in combination with additional experimental or covalent information.  相似文献   

12.
The structure and dynamics of the stem-loop transactivation response element (TAR) RNA from the human immunodeficiency virus type-1 (HIV-1) bound to the ligand argininamide (ARG) has been characterized using a combination of a large number of residual dipolar couplings (RDCs) and trans-hydrogen bond NMR methodology. Binding of ARG to TAR changes the average inter-helical angle between the two stems from approximately 47 degrees in the free state to approximately 11 degrees in the bound state, and leads to the arrest of large amplitude (+/-46 degrees ) inter-helical motions observed previously in the free state. While the global structural dynamics of TAR-ARG is similar to that previously reported for TAR bound to Mg2+, there are substantial differences in the hydrogen bond alignment of bulge and neighboring residues. Based on a novel H5(C5)NN experiment for probing hydrogen-mediated 2hJ(N,N) scalar couplings as well as measured RDCs, the TAR-ARG complex is stabilized by a U38-A27.U23 base-triple involving an A27.U23 reverse Hoogsteen hydrogen bond alignment as well as by a A22-U40 Watson-Crick base-pair at the junction of stem I. These hydrogen bond alignments are not observed in either the free or Mg2+ bound forms of TAR. The combined conformational analysis of TAR under three states reveals that ligands and divalent ions can stabilize similar RNA global conformations through distinct interactions involving different hydrogen bond alignments in the RNA.  相似文献   

13.
Residual dipolar couplings (RDCs) can provide exquisitely detailed information about the structure and dynamics of proteins. It is challenging, however, to extract such information from RDC measurements in conformationally heterogeneous states of proteins because of the complex relationship between RDCs and protein structures. To obtain new insights into this problem, we discuss methods of calculating the RDCs that do not require the definition of an alignment tensor. These methods can help in particular in the search of effective ways to use RDCs to characterise disordered or partially disordered states of proteins.  相似文献   

14.
We report a new residual dipolar couplings (RDCs) based NMR procedure for rapidly determining RNA tertiary structure demonstrated on a uniformly (15)N/(13)C-labeled 27 nt variant of the trans-activation response element (TAR) RNA from HIV-I. In this procedure, the time-consuming nuclear Overhauser enhancement (NOE)-based sequential assignment step is replaced by a fully automated RDC-based assignment strategy. This approach involves examination of all allowed sequence-specific resonance assignment permutations for best-fit agreement between measured RDCs and coordinates for sub-structures in a target RNA. Using idealized A-form geometries to model Watson-Crick helices and coordinates from a previous X-ray structure to model a hairpin loop in TAR, the best-fit RDC assignment solutions are determined very rapidly (相似文献   

15.
16.
Large residual 15N-1H dipolar couplings have been measured in a Src homology II domain aligned at Pf1 bacteriophage concentrations an order of magnitude lower than used for induction of a similar degree of alignment of nucleic acids and highly acidic proteins. An increase in 1 H and 15N protein linewidths and a decrease in T2 and T1 relaxation time constants implicates a binding interaction between the protein and phage as the mechanism of alignment. However, the associated increased linewidth does not preclude the accurate measurement of large dipolar couplings in the aligned protein. A good correlation is observed between measured dipolar couplings and predicted values based on the high resolution NMR structure of the SH2 domain. The observation of binding-induced protein alignment promises to broaden the scope of alignment techniques by extending their applicability to proteins that are able to interact weakly with the alignment medium.  相似文献   

17.
Homonuclear 1H residual dipolar couplings (RDCs) truncate the evolution of transverse 1H magnetization of weakly aligned molecules in high-resolution NMR experiments. This leads to losses in sensitivity or resolution in experiments that require extended 1H evolution times. Lee–Goldburg decoupling schemes have been shown to remove the effects of homonuclear dipolar couplings, while preserving chemical shift evolution in a number of solid-state NMR applications. Here, it is shown that the Lee-Goldburg sequence can be effectively incorporated into INEPT- or HMQC-type transfer schemes in liquid state weak alignment experiments in order to increase the efficiency of the magnetization transfer. The method is applied to the sensitive detection of 1HN13C long-range RDCs in a three-dimensional HCN experiment. As compared to a conventional HCN experiment, an average sensitivity increase by a factor of 2.4 is obtained for a sample of weakly aligned protein G. This makes it possible to detect 170 long-range 1HN13C RDCs for distances up to 4.9 Å  相似文献   

18.
A general method is presented for magnetic field alignment of proteins in solution. By tagging a target protein with calmodulin saturated with paramagnetic lanthanide ions it is possible to measure substantial residual dipolar couplings (RDC) whilst minimising the effects of pseudocontact shifts on the target protein. A construct was made consisting of a calmodulin-binding peptide (M13 from sk-MLCK) attached to a target protein, dihydrofolate reductase in this case. The engineered protein binds tightly to calmodulin saturated with terbium, a paramagnetic lanthanide ion. By using only a short linker region between the M13 and the target protein, some of the magnetic field alignment induced in the CaM(Tb3 +)4 is effectively transmitted to the target protein (DHFR). 1H-15N HSQC IPAP experiments on the tagged complex containing 15N-labelled DHFR-M13 protein and unlabelled CaM(Tb3 +)4 allow one to measure RDC contributions in the aligned complex. RDC values in the range +4.0 to –7.4 Hz were measured at 600 MHz. Comparisons of 1H-15N HSQC spectra of 15N-DHFR-M13 alone and its complexes with CaM(Ca2 +)4 and CaM(Tb3+)4 indicated that (i) the structure of the target protein is not affected by the complex formation and (ii) the spectra of the target protein are not seriously perturbed by pseudocontact shifts. The use of a relatively large tagging group (CaM) allows us to use a lanthanide ion with a very high magnetic susceptibility anisotropy (such as Tb3+) to give large alignments while maintaining relatively long distances from the target protein nuclei (and hence giving only small pseudocontact shift contributions).  相似文献   

19.
The structure of the 13C,15N-labeled d(GCGAAGC) hairpin, as determined by NMR spectroscopy and refined using molecular dynamics with NOE-derived distances, torsion angles, and residual dipolar couplings (RDCs), is presented. Although the studied molecule is of small size, it is demonstrated that the incorporation of diminutive RDCs can significantly improve local structure determination of regions undefined by the conventional restraints. Very good correlation between the experimental and back-calculated small one- and two-bond 1H-13C, 1H-15N, 13C-13C and 13C-15N coupling constants has been attained. The final structures clearly show typical features of the miniloop architecture. The structure is discussed in context of the extraordinary stability of the d(GCGAAGC) hairpin, which originates from a complex interplay between the aromatic base stacking and hydrogen bonding interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号